These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22190743)

  • 21. Impact of age-associated increase in 2'-O-methylation of miRNAs on aging and neurodegeneration in Drosophila.
    Abe M; Naqvi A; Hendriks GJ; Feltzin V; Zhu Y; Grigoriev A; Bonini NM
    Genes Dev; 2014 Jan; 28(1):44-57. PubMed ID: 24395246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. R2D2 organizes small regulatory RNA pathways in Drosophila.
    Okamura K; Robine N; Liu Y; Liu Q; Lai EC
    Mol Cell Biol; 2011 Feb; 31(4):884-96. PubMed ID: 21135122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-Resolved Small RNA Sequencing Unravels the Molecular Principles of MicroRNA Homeostasis.
    Reichholf B; Herzog VA; Fasching N; Manzenreither RA; Sowemimo I; Ameres SL
    Mol Cell; 2019 Aug; 75(4):756-768.e7. PubMed ID: 31350118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence.
    Berezikov E; Robine N; Samsonova A; Westholm JO; Naqvi A; Hung JH; Okamura K; Dai Q; Bortolamiol-Becet D; Martin R; Zhao Y; Zamore PD; Hannon GJ; Marra MA; Weng Z; Perrimon N; Lai EC
    Genome Res; 2011 Feb; 21(2):203-15. PubMed ID: 21177969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The long and short of inverted repeat genes in animals: microRNAs, mirtrons and hairpin RNAs.
    Okamura K; Chung WJ; Lai EC
    Cell Cycle; 2008 Sep; 7(18):2840-5. PubMed ID: 18769156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway.
    Miyoshi K; Okada TN; Siomi H; Siomi MC
    RNA; 2009 Jul; 15(7):1282-91. PubMed ID: 19451544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Drosophila pasha mutant distinguishes the canonical microRNA and mirtron pathways.
    Martin R; Smibert P; Yalcin A; Tyler DM; Schäfer U; Tuschl T; Lai EC
    Mol Cell Biol; 2009 Feb; 29(3):861-70. PubMed ID: 19047376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global profiling of miRNAs and the hairpin precursors: insights into miRNA processing and novel miRNA discovery.
    Li N; You X; Chen T; Mackowiak SD; Friedländer MR; Weigt M; Du H; Gogol-Döring A; Chang Z; Dieterich C; Hu Y; Chen W
    Nucleic Acids Res; 2013 Apr; 41(6):3619-34. PubMed ID: 23396444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iruka Eliminates Dysfunctional Argonaute by Selective Ubiquitination of Its Empty State.
    Kobayashi H; Shoji K; Kiyokawa K; Negishi L; Tomari Y
    Mol Cell; 2019 Jan; 73(1):119-129.e5. PubMed ID: 30503771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mirtrons: microRNA biogenesis via splicing.
    Westholm JO; Lai EC
    Biochimie; 2011 Nov; 93(11):1897-904. PubMed ID: 21712066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical rules for Argonaute loading in Drosophila.
    Czech B; Zhou R; Erlich Y; Brennecke J; Binari R; Villalta C; Gordon A; Perrimon N; Hannon GJ
    Mol Cell; 2009 Nov; 36(3):445-56. PubMed ID: 19917252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biogenesis and characterization of mammalian microRNAs of mirtron origin.
    Sibley CR; Seow Y; Saayman S; Dijkstra KK; El Andaloussi S; Weinberg MS; Wood MJ
    Nucleic Acids Res; 2012 Jan; 40(1):438-48. PubMed ID: 21914725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional VEGFA knockdown with artificial 3'-tailed mirtrons defined by 5' splice site and branch point.
    Kock KH; Kong KW; Hoon S; Seow Y
    Nucleic Acids Res; 2015 Jul; 43(13):6568-78. PubMed ID: 26089392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinguishing mirtrons from canonical miRNAs with data exploration and machine learning methods.
    Rorbach G; Unold O; Konopka BM
    Sci Rep; 2018 May; 8(1):7560. PubMed ID: 29765080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes.
    Okamura K; Liu N; Lai EC
    Mol Cell; 2009 Nov; 36(3):431-44. PubMed ID: 19917251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.
    Pinder BD; Smibert CA
    EMBO Rep; 2013 Jan; 14(1):80-6. PubMed ID: 23184089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The impact of age, biogenesis, and genomic clustering on Drosophila microRNA evolution.
    Mohammed J; Flynt AS; Siepel A; Lai EC
    RNA; 2013 Sep; 19(9):1295-308. PubMed ID: 23882112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the Uridylation of Both ARGONAUTE-Bound MiRNAs and 5' Cleavage Products of Their Target RNAs in Plants.
    Ren G; Wang X; Yu B
    Methods Mol Biol; 2017; 1640():23-37. PubMed ID: 28608332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural features of small RNA precursors determine Argonaute loading in Caenorhabditis elegans.
    Steiner FA; Hoogstrate SW; Okihara KL; Thijssen KL; Ketting RF; Plasterk RH; Sijen T
    Nat Struct Mol Biol; 2007 Oct; 14(10):927-33. PubMed ID: 17891148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human mirtrons can express functional microRNAs simultaneously from both arms in a flanking exon-independent manner.
    Schamberger A; Sarkadi B; Orban TI
    RNA Biol; 2012 Sep; 9(9):1177-85. PubMed ID: 23018783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.