BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2219119)

  • 1. Bioactivation of 3-methylindole by isolated rabbit lung cells.
    Nichols WK; Larson DN; Yost GS
    Toxicol Appl Pharmacol; 1990 Sep; 105(2):264-70. PubMed ID: 2219119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism and bioactivation of 3-methylindole by Clara cells, alveolar macrophages, and subcellular fractions from rabbit lungs.
    Thornton-Manning JR; Nichols WK; Manning BW; Skiles GL; Yost GS
    Toxicol Appl Pharmacol; 1993 Oct; 122(2):182-90. PubMed ID: 8212000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Methylindole metabolites induce lung CYP1A1 and CYP2F1 enzymes by AhR and non-AhR mechanisms, respectively.
    Weems JM; Yost GS
    Chem Res Toxicol; 2010 Mar; 23(3):696-704. PubMed ID: 20187624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactivation of halogenated hydrocarbons by rabbit pulmonary cells.
    Nichols WK; Covington MO; Seiders CD; Safiullah S; Yost GS
    Pharmacol Toxicol; 1992 Nov; 71(5):335-9. PubMed ID: 1448445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism-based inactivation of lung-selective cytochrome P450 CYP2F enzymes.
    Kartha JS; Yost GS
    Drug Metab Dispos; 2008 Jan; 36(1):155-62. PubMed ID: 17962375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and expression of CYP2F3, a cytochrome P450 that bioactivates the selective pneumotoxins 3-methylindole and naphthalene.
    Wang H; Lanza DL; Yost GS
    Arch Biochem Biophys; 1998 Jan; 349(2):329-40. PubMed ID: 9448722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potent mutagenicity of 3-methylindole requires pulmonary cytochrome P450-mediated bioactivation: a comparison to the prototype cigarette smoke mutagens B(a)P and NNK.
    Weems JM; Lamb JG; D'Agostino J; Ding X; Yost GS
    Chem Res Toxicol; 2010 Nov; 23(11):1682-90. PubMed ID: 20795680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-methylindole-induced toxicity to human bronchial epithelial cell lines.
    Nichols WK; Mehta R; Skordos K; Macé K; Pfeifer AM; Carr BA; Minko T; Burchiel SW; Yost GS
    Toxicol Sci; 2003 Feb; 71(2):229-36. PubMed ID: 12563108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic activation of the pneumotoxin, 3-methylindole, by vaccinia-expressed cytochrome P450s.
    Thornton-Manning JR; Ruangyuttikarn W; Gonzalez FJ; Yost GS
    Biochem Biophys Res Commun; 1991 Nov; 181(1):100-7. PubMed ID: 1958177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic studies on the cytochrome P450-catalyzed dehydrogenation of 3-methylindole.
    Skiles GL; Yost GS
    Chem Res Toxicol; 1996; 9(1):291-7. PubMed ID: 8924606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respective roles of CYP2A5 and CYP2F2 in the bioactivation of 3-methylindole in mouse olfactory mucosa and lung: studies using Cyp2a5-null and Cyp2f2-null mouse models.
    Zhou X; D'Agostino J; Li L; Moore CD; Yost GS; Ding X
    Drug Metab Dispos; 2012 Apr; 40(4):642-7. PubMed ID: 22228748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of 3-methylindole in human tissues.
    Ruangyuttikarn W; Appleton ML; Yost GS
    Drug Metab Dispos; 1991; 19(5):977-84. PubMed ID: 1686246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single mutations change CYP2F3 from a dehydrogenase of 3-methylindole to an oxygenase.
    Kartha JS; Skordos KW; Sun H; Hall C; Easterwood LM; Reilly CA; Johnson EF; Yost GS
    Biochemistry; 2008 Sep; 47(37):9756-70. PubMed ID: 18717595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and characterization of specific antibodies: utilization to predict organ- and species-selective pneumotoxicity of 3-methylindole.
    Kaster JK; Yost GS
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):324-37. PubMed ID: 9144449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific dehydrogenation of 3-methylindole and epoxidation of naphthalene by recombinant human CYP2F1 expressed in lymphoblastoid cells.
    Lanza DL; Code E; Crespi CL; Gonzalez FJ; Yost GS
    Drug Metab Dispos; 1999 Jul; 27(7):798-803. PubMed ID: 10383923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of a mercapturate adduct produced subsequent to glutathione conjugation of bioactivated 3-methylindole.
    Skiles GL; Smith DJ; Appleton ML; Carlson JR; Yost GS
    Toxicol Appl Pharmacol; 1991 May; 108(3):531-7. PubMed ID: 2020974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation at C-1 controls the cytotoxicity of 1,1-dichloro-2,2- bis(p-chlorophenyl)ethane by rabbit and human lung cells.
    Nichols WK; Terry CM; Cutler NS; Appleton ML; Jesthi PK; Yost GS
    Drug Metab Dispos; 1995 May; 23(5):595-9. PubMed ID: 7587937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoradiographic evidence of 3-methylindole covalent binding to pulmonary epithelial cells in the goat.
    Becker GM; Breeze RG; Carlson JR
    Toxicology; 1984 May; 31(2):109-21. PubMed ID: 6204422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione adduct formation with microsomally activated metabolites of the pulmonary alkylating and cytotoxic agent, 3-methylindole.
    Nocerini MR; Carlson JR; Yost GS
    Toxicol Appl Pharmacol; 1985 Oct; 81(1):75-84. PubMed ID: 4049423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of different porcine cytochrome P450 enzymes and cytochrome b5A in skatole metabolism.
    Wiercinska P; Lou Y; Squires EJ
    Animal; 2012 May; 6(5):834-45. PubMed ID: 22558931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.