These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22191400)

  • 1. Self-regulated, droplet-based sample chopper for microfluidic absorbance detection.
    Deal KS; Easley CJ
    Anal Chem; 2012 Feb; 84(3):1510-6. PubMed ID: 22191400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Microfluidic Droplet-Based Sample Chopper for Detection of Small Fluorescence Differences Using Lock-In Analysis.
    Negou JT; Avila LA; Li X; Hagos TM; Easley CJ
    Anal Chem; 2017 Jun; 89(11):6153-6159. PubMed ID: 28467848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet-based μChopper device with a 3D-printed pneumatic valving layer and a simple photometer for absorbance based fructosamine quantification in human serum.
    Kayirangwa Y; Mohibullah M; Easley CJ
    Analyst; 2023 Sep; 148(19):4810-4819. PubMed ID: 37605899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoliter droplet viscometer with additive-free operation.
    Livak-Dahl E; Lee J; Burns MA
    Lab Chip; 2013 Jan; 13(2):297-301. PubMed ID: 23192296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation.
    Luo C; Yang X; Fu Q; Sun M; Ouyang Q; Chen Y; Ji H
    Electrophoresis; 2006 May; 27(10):1977-83. PubMed ID: 16596709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancement of analytical modes in a multichannel, microfluidic droplet-based sample chopper employing phase-locked detection.
    Negou JT; Hu J; Li X; Easley CJ
    Anal Methods; 2018 Jul; 10(28):3436-3443. PubMed ID: 30505354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-demand generation of monodisperse femtolitre droplets by shape-induced shear.
    Jung SY; Retterer ST; Collier CP
    Lab Chip; 2010 Oct; 10(20):2688-94. PubMed ID: 20721397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coalescence-assisted generation of single nanoliter droplets with predefined composition.
    Shemesh J; Nir A; Bransky A; Levenberg S
    Lab Chip; 2011 Oct; 11(19):3225-30. PubMed ID: 21826345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive self-synchronized two-droplet generation.
    Hong J; Choi M; Edel JB; deMello AJ
    Lab Chip; 2010 Oct; 10(20):2702-9. PubMed ID: 20717573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallelized edge-based droplet generation (EDGE) devices.
    van Dijke K; Veldhuis G; Schroën K; Boom R
    Lab Chip; 2009 Oct; 9(19):2824-30. PubMed ID: 19967120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of fluorescence generated in microfluidic channel using in-fiber grooves and in-fiber microchannel sensors.
    Irawan R; Tjin SC
    Methods Mol Biol; 2009; 503():403-22. PubMed ID: 19151955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay.
    Cai LF; Zhu Y; Du GS; Fang Q
    Anal Chem; 2012 Jan; 84(1):446-52. PubMed ID: 22128774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic device for self-synchronised production of droplets.
    Gupta R; Baldock SJ; Carreras P; Fielden PR; Goddard NJ; Mohr S; Razavi BS; Brown BJ
    Lab Chip; 2011 Dec; 11(23):4052-6. PubMed ID: 22020312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 405 nm absorption detection in nanoliter volumes.
    Waechter H; Bescherer K; Dürr CJ; Oleschuk RD; Loock HP
    Anal Chem; 2009 Nov; 81(21):9048-54. PubMed ID: 19813748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging.
    Malic L; Veres T; Tabrizian M
    Biosens Bioelectron; 2011 Jan; 26(5):2053-9. PubMed ID: 20926281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A perfusion-based micro opto-fluidic system (PMOFS) for continuously in-situ immune sensing.
    Tseng YT; Yang CS; Tseng FG
    Lab Chip; 2009 Sep; 9(18):2673-82. PubMed ID: 19704983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic droplet generator based on a piezoelectric actuator.
    Bransky A; Korin N; Khoury M; Levenberg S
    Lab Chip; 2009 Feb; 9(4):516-20. PubMed ID: 19190786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.