These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2219171)

  • 1. Biochemical mechanisms of cephaloridine nephrotoxicity in suspensions of isolated rabbit proximal tubules.
    Rush GF; Ponsler GD
    Toxicol Lett; 1990 Sep; 53(1-2):215-7. PubMed ID: 2219171
    [No Abstract]   [Full Text] [Related]  

  • 2. Cephaloridine-induced renal pathological and biochemical changes in female rabbits and isolated proximal tubules in suspension.
    Rush GF; Heim RA; Ponsler GD; Engelhardt J
    Toxicol Pathol; 1992; 20(2):155-68. PubMed ID: 1475577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cephaloridine-induced biochemical changes and cytotoxicity in suspensions of rabbit isolated proximal tubules.
    Rush GF; Ponsler GD
    Toxicol Appl Pharmacol; 1991 Jun; 109(2):314-26. PubMed ID: 2068729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of acute cephaloridine nephrotoxicity in rats: correlation of serum and 24-hr urine analyses with proximal tubule injuries.
    Wachsmuth ED
    Toxicol Appl Pharmacol; 1982 May; 63(3):429-45. PubMed ID: 7101302
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification of novel targets of cephaloridine in rabbit renal proximal tubules synthesizing glutamine from alanine.
    Guitton J; Conjard A; Eid A; Martin M; Boghossian M; Delage H; Baverel G; Ferrier B
    Arch Toxicol; 2005 Oct; 79(10):587-94. PubMed ID: 15991025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal cell type specificity of cephalosporin-induced cytotoxicity in suspensions of isolated proximal tubular and distal tubular cells.
    Lash LH; Tokarz JJ; Woods EB
    Toxicology; 1994; 94(1-3):97-118. PubMed ID: 7801333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantages of a two-chamber culture system to test drug nephrotoxicity: the example of cephaloridine.
    Bolon C; Gauthier C; Simonnet H; Baverel G
    Kidney Blood Press Res; 1997; 20(4):264-70. PubMed ID: 9398033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the transport and toxicity of cephalosporins in the kidney.
    Tune BM
    J Infect Dis; 1975 Aug; 132(2):189-94. PubMed ID: 1159324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation to nephrotoxic effects of cephaloridine in subacute rat toxicity studies.
    Wachsmuth ED
    Toxicol Appl Pharmacol; 1982 May; 63(3):446-60. PubMed ID: 7101303
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of verapamil on cephaloridine nephrotoxicity in the rabbit.
    Browning MC
    Toxicol Appl Pharmacol; 1990 May; 103(3):383-8. PubMed ID: 2339412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative impact of cephaloridine on glutathione and related enzymes in LLC-PK1, LLC-RK1, and primary cultures of rat and rabbit proximal tubule cells.
    Morin JP; Marouillat S; Lendormi C; Monteil C
    Cell Biol Toxicol; 1996 Dec; 12(4-6):275-82. PubMed ID: 9034621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rabbit renal proximal tubule suspensions as a model for nephrotoxicity evaluation of native or in situ metabolized beta-lactam antibiotics.
    Dutertre-Catella H; Martin C; Debray M; Pham-Huy C; Thevenin M; Warnet JM; Podevin RA; Claude JR
    Arch Toxicol Suppl; 1995; 17():215-7. PubMed ID: 7786159
    [No Abstract]   [Full Text] [Related]  

  • 13. Difference in H2O2 toxicity between intact renal tubules and cultured proximal tubular cells.
    Kim YK; Ko SH; Woo JS; Lee SH; Jung JS
    Biochem Pharmacol; 1998 Aug; 56(4):489-95. PubMed ID: 9763225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atractyloside nephrotoxicity: in vitro studies with suspensions of rat renal fragments and precision-cut cortical slices.
    Obatomi DK; Bach PH
    In Vitr Mol Toxicol; 2000; 13(1):25-36. PubMed ID: 10900405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical mechanisms of cephaloridine nephrotoxicity.
    Goldstein RS; Smith PF; Tarloff JB; Contardi L; Rush GF; Hook JB
    Life Sci; 1988; 42(19):1809-16. PubMed ID: 3285106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro comparative study on nephrotoxicity of cyclosporine A, its metabolites M1, M17, M21, and its analogues cyclosporines C and D in suspensions of rabbit renal cortical cells.
    Sadeg N; Pham-Huy C; Martin C; Warnet JM; Claude JR
    Drug Chem Toxicol; 1994; 17(2):93-111. PubMed ID: 7914868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effect of N-acyl amino acids (NAAs) on cephaloridine (CER) nephrotoxicity in rabbits.
    Hirouchi Y; Naganuma H; Kawahara Y; Okada R; Kamiya A; Inui K; Hori R
    Jpn J Pharmacol; 1993 Dec; 63(4):487-93. PubMed ID: 7509889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cephaloridine-induced inhibition of cytochrome c oxidase activity in the mitochondria of cultured renal epithelial cells (LLC-PK(1)) as a possible mechanism of its nephrotoxicity.
    Kiyomiya K; Matsushita N; Matsuo S; Kurebe M
    Toxicol Appl Pharmacol; 2000 Sep; 167(2):151-6. PubMed ID: 10964766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nephrotoxicity of CdCl2 and Cd-metallothionein in cultured rat kidney proximal tubules and LLC-PK1 cells.
    Liu J; Liu Y; Klaassen CD
    Toxicol Appl Pharmacol; 1994 Oct; 128(2):264-70. PubMed ID: 7940541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative and mitochondrial toxic effects of cephalosporin antibiotics in the kidney. A comparative study of cephaloridine and cephaloglycin.
    Tune BM; Fravert D; Hsu CY
    Biochem Pharmacol; 1989 Mar; 38(5):795-802. PubMed ID: 2930580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.