These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 22191845)

  • 1. Soil lead mineralogy by microprobe: an interlaboratory comparison.
    Link TE; Ruby MV; Davis A; Nicholson AD
    Environ Sci Technol; 1994 May; 28(5):985-8. PubMed ID: 22191845
    [No Abstract]   [Full Text] [Related]  

  • 2. Interlaboratory comparison of analyses for heavy metals in clam tissue.
    Hendzel MR; Fallis BW; deMarch BG
    J Assoc Off Anal Chem; 1986; 69(5):863-8. PubMed ID: 3771459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlaboratory and intralaboratory variabilities in the Environmental Lead Proficiency Analytical Testing (ELPAT) Program.
    Schlecht PC; Song R; Groff JH; Feng HA; Esche CA
    Am Ind Hyg Assoc J; 1997 Nov; 58(11):779-86. PubMed ID: 9373923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate analysis of the geochemistry and mineralogy of soils along two continental-scale transects in North America.
    Drew LJ; Grunsky EC; Sutphin DM; Woodruff LG
    Sci Total Environ; 2010 Dec; 409(1):218-27. PubMed ID: 20952047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pb speciation versus TCLP release in army firing range soils.
    Dermatas D; Shen G; Chrysochoou M; Grubb DG; Menounou N; Dutko P
    J Hazard Mater; 2006 Aug; 136(1):34-46. PubMed ID: 16387429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interlaboratory comparison of blood lead determinations.
    Maher CC; Roettgers DM; Conlon HJ
    Am Ind Hyg Assoc J; 1979 Mar; 40(3):230-7. PubMed ID: 495462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant.
    Aşçi Y; Nurbaş M; Açikel YS
    J Hazard Mater; 2008 Jun; 154(1-3):663-73. PubMed ID: 18068293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach to the examination of soil evidence: mineral identification using infrared microprobe analysis.
    Weinger BA; Reffner JA; De Forest PR
    J Forensic Sci; 2009 Jul; 54(4):851-6. PubMed ID: 19467138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil Mineralogy as Factor in Spread of Fusarium Wilt of Banana.
    Stotzky G; Dawson JE; Martin RT; Ter Kuile CH
    Science; 1961 May; 133(3463):1483-5. PubMed ID: 17818209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of Fusarium solani f. sp. phaseoli on Bean by Aluminum in Acid Soils.
    Furuya H; Takahashi T; Matsumoto T
    Phytopathology; 1999 Jan; 89(1):47-52. PubMed ID: 18944802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlaboratory evaluation of an extraction and fluorescence method for the determination of trace beryllium in soils.
    Cronin JP; Agrawal A; Adams L; Tonazzi JC; Brisson MJ; White KT; Marlow D; Ashley K
    J Environ Monit; 2008 Aug; 10(8):955-60. PubMed ID: 18688465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microprobe analysis of 60Co uptake in sand microcosm.
    Draggan S
    Xenobiotica; 1976 Sep; 6(9):557-63. PubMed ID: 983126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia.
    Meunier L; Walker SR; Wragg J; Parsons MB; Koch I; Jamieson HE; Reimer KJ
    Environ Sci Technol; 2010 Apr; 44(7):2667-74. PubMed ID: 20218545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of 4-year-old stabilised/solidified and accelerated carbonated contaminated soil.
    Antemir A; Hills CD; Carey PJ; Magnié MC; Polettini A
    J Hazard Mater; 2010 Sep; 181(1-3):543-55. PubMed ID: 20579807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lead exposure in day care centres in the Caracas Valley--Venezuela.
    Fernández R; Morales F; Benzo Z
    Int J Environ Health Res; 2003 Mar; 13(1):3-9. PubMed ID: 12745342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Results of interlaboratory comparisons of column percolation tests.
    Kalbe U; Berger W; Simon FG; Eckardt J; Christoph G
    J Hazard Mater; 2007 Sep; 148(3):714-20. PubMed ID: 17451876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic and lead residues in carrots from foliar applications of monosodium methanearsonate (MSMA): A comparison between mineral and organic soils, or from soil residues.
    Zandstra BH; De Kryger TA
    Food Addit Contam; 2007 Jan; 24(1):34-42. PubMed ID: 17164215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of determination of lead (Pb) in blood by electrothermal atomic absorption spectrometry (ETAAS) on the basis of interlaboratory comparison data.
    Izquierdo Alvarez S; Calvo Ruata ML; González López JM; de Jalón Comet AG; Escanero Marcén JF
    J Trace Elem Med Biol; 2007; 21 Suppl 1():26-8. PubMed ID: 18039491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils.
    Appel C; Ma L
    J Environ Qual; 2002; 31(2):581-9. PubMed ID: 11931450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of synchrotron microprobe methods to solid-phase speciation of metals and metalloids in house dust.
    Walker SR; Jamieson HE; Rasmussen PE
    Environ Sci Technol; 2011 Oct; 45(19):8233-40. PubMed ID: 21842879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.