These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
625 related articles for article (PubMed ID: 22191857)
1. Communication: Quantum polarized fluctuating charge model: a practical method to include ligand polarizability in biomolecular simulations. Kimura SR; Rajamani R; Langley DR J Chem Phys; 2011 Dec; 135(23):231101. PubMed ID: 22191857 [TBL] [Abstract][Full Text] [Related]
2. Some practical approaches to treating electrostatic polarization of proteins. Ji C; Mei Y Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956 [TBL] [Abstract][Full Text] [Related]
3. Conformational dependence of charges in protein simulations. Söderhjelm P; Ryde U J Comput Chem; 2009 Apr; 30(5):750-60. PubMed ID: 18773405 [TBL] [Abstract][Full Text] [Related]
4. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. Mobley DL; Dumont E; Chodera JD; Dill KA J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029 [TBL] [Abstract][Full Text] [Related]
5. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. Patel S; Mackerell AD; Brooks CL J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394 [TBL] [Abstract][Full Text] [Related]
6. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
7. Estimates of ligand-binding affinities supported by quantum mechanical methods. Söderhjelm P; Kongsted J; Genheden S; Ryde U Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794 [TBL] [Abstract][Full Text] [Related]
8. Electronic polarization is important in stabilizing the native structures of proteins. Ji CG; Zhang JZ J Phys Chem B; 2009 Dec; 113(49):16059-64. PubMed ID: 19954243 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials. Hassan SA; Mehler EL; Zhang D; Weinstein H Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268 [TBL] [Abstract][Full Text] [Related]
10. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model. Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052 [TBL] [Abstract][Full Text] [Related]
11. A fast empirical GAFF compatible partial atomic charge assignment scheme for modeling interactions of small molecules with biomolecular targets. Mukherjee G; Patra N; Barua P; Jayaram B J Comput Chem; 2011 Apr; 32(5):893-907. PubMed ID: 21341292 [TBL] [Abstract][Full Text] [Related]
12. Performance assessment of semiempirical molecular orbital methods in describing halogen bonding: quantum mechanical and quantum mechanical/molecular mechanical-molecular dynamics study. Ibrahim MA J Chem Inf Model; 2011 Oct; 51(10):2549-59. PubMed ID: 21942911 [TBL] [Abstract][Full Text] [Related]
13. Polarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations. Mo Y; Gao J J Phys Chem B; 2006 Feb; 110(7):2976-80. PubMed ID: 16494296 [TBL] [Abstract][Full Text] [Related]
14. Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics. Koca J; Zhan CG; Rittenhouse RC; Ornstein RL J Comput Chem; 2003 Feb; 24(3):368-78. PubMed ID: 12548728 [TBL] [Abstract][Full Text] [Related]
15. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins. Lu X; Cui Q J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181 [TBL] [Abstract][Full Text] [Related]
16. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY; Chu ZT; Tao H; Warshel A Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821 [TBL] [Abstract][Full Text] [Related]
17. Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules. Fox SJ; Pittock C; Fox T; Tautermann CS; Malcolm N; Skylaris CK J Chem Phys; 2011 Dec; 135(22):224107. PubMed ID: 22168680 [TBL] [Abstract][Full Text] [Related]
18. Effect of polarization on the opsin shift in rhodopsins. 2. Empirical polarization models for proteins. Wanko M; Hoffmann M; Frähmcke J; Frauenheim T; Elstner M J Phys Chem B; 2008 Sep; 112(37):11468-78. PubMed ID: 18729405 [TBL] [Abstract][Full Text] [Related]
19. Nonuniform charge scaling (NUCS): a practical approximation of solvent electrostatic screening in proteins. Schwarzl SM; Huang D; Smith JC; Fischer S J Comput Chem; 2005 Oct; 26(13):1359-71. PubMed ID: 16021598 [TBL] [Abstract][Full Text] [Related]
20. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies. Bryce RA Future Med Chem; 2011 Apr; 3(6):683-98. PubMed ID: 21554075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]