These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22191864)

  • 1. Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. II. Canonical and isokinetic ensembles.
    Omelyan IP; Kovalenko A
    J Chem Phys; 2011 Dec; 135(23):234107. PubMed ID: 22191864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. I. Microcanonical ensemble.
    Omelyan IP; Kovalenko A
    J Chem Phys; 2011 Sep; 135(11):114110. PubMed ID: 21950853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming the Barrier on Time Step Size in Multiscale Molecular Dynamics Simulation of Molecular Liquids.
    Omelyan IP; Kovalenko A
    J Chem Theory Comput; 2012 Jan; 8(1):6-16. PubMed ID: 26592867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules.
    Kamberaj H; Low RJ; Neal MP
    J Chem Phys; 2005 Jun; 122(22):224114. PubMed ID: 15974658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretation of atomic motion in flexible molecules: accelerating molecular dynamics simulations.
    Omelyan I; Kovalenko A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026706. PubMed ID: 22463356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The canonical ensemble via symplectic integrators using Nosé and Nosé-Poincaré chains.
    Leimkuhler BJ; Sweet CR
    J Chem Phys; 2004 Jul; 121(1):108-16. PubMed ID: 15260527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: accelerating with advanced extrapolation of effective solvation forces.
    Omelyan I; Kovalenko A
    J Chem Phys; 2013 Dec; 139(24):244106. PubMed ID: 24387356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical examination of the extended phase-space volume-preserving integrator by the Nosé-Hoover molecular dynamics equations.
    Queyroy S; Nakamura H; Fukuda I
    J Comput Chem; 2009 Sep; 30(12):1799-815. PubMed ID: 19090566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics based enhanced sampling of collective variables with very large time steps.
    Chen PY; Tuckerman ME
    J Chem Phys; 2018 Jan; 148(2):024106. PubMed ID: 29331137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Stochastic, Resonance-Free Multiple Time-Step Algorithm for Polarizable Models That Permits Very Large Time Steps.
    Margul DT; Tuckerman ME
    J Chem Theory Comput; 2016 May; 12(5):2170-80. PubMed ID: 27054809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A configurational temperature Nosé-Hoover thermostat.
    Braga C; Travis KP
    J Chem Phys; 2005 Oct; 123(13):134101. PubMed ID: 16223269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Configurational constant pressure molecular dynamics.
    Braga C; Travis KP
    J Chem Phys; 2006 Mar; 124(10):104102. PubMed ID: 16542063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovering the Crooks equation for dynamical systems in the isothermal-isobaric ensemble: a strategy based on the equations of motion.
    Chelli R; Marsili S; Barducci A; Procacci P
    J Chem Phys; 2007 Jan; 126(4):044502. PubMed ID: 17286482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proof of Jarzynski's nonequilibrium work theorem for dynamical systems that conserve the canonical distribution.
    Schöll-Paschinger E; Dellago C
    J Chem Phys; 2006 Aug; 125(5):054105. PubMed ID: 16942201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementations of Nosé-Hoover and Nosé-Poincaré thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain.
    Kleinerman DS; Czaplewski C; Liwo A; Scheraga HA
    J Chem Phys; 2008 Jun; 128(24):245103. PubMed ID: 18601387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Jarzynski identity derived from general Hamiltonian or non-Hamiltonian dynamics reproducing NVT or NPT ensembles.
    Cuendet MA
    J Chem Phys; 2006 Oct; 125(14):144109. PubMed ID: 17042581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inherent speedup limitations in multiple time step/particle mesh Ewald algorithms.
    Barash D; Yang L; Qian X; Schlick T
    J Comput Chem; 2003 Jan; 24(1):77-88. PubMed ID: 12483677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rigid-body dynamics in the isothermal-isobaric ensemble: a test on the accuracy and computational efficiency.
    Shinoda W; Mikami M
    J Comput Chem; 2003 Jun; 24(8):920-30. PubMed ID: 12720312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of critical dynamics in fluids via molecular dynamics in canonical ensemble.
    Roy S; Das SK
    Eur Phys J E Soft Matter; 2015 Dec; 38(12):132. PubMed ID: 26687057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.