BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22191907)

  • 1. Measurement of anisotropic reflection of flowing blood using optical coherence tomography.
    Nam KH; Jeong B; Jung IO; Ha H; Kim KH; Lee SJ
    J Biomed Opt; 2011 Dec; 16(12):120502. PubMed ID: 22191907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between velocity profile and ultrasound echogenicity in pulsatile blood flows.
    Yeom E; Lee SJ
    Clin Hemorheol Microcirc; 2015; 59(3):197-209. PubMed ID: 24002117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of red blood cell rouleaux formation studied by light scattering.
    Szolna-Chodór A; Bosek M; Grzegorzewski B
    J Biomed Opt; 2015 Feb; 20(2):25001. PubMed ID: 25649625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow.
    Nam KH; Paeng DG; Choi MJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):270-9. PubMed ID: 19251514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple scattering effects in Doppler optical coherence tomography of flowing blood.
    Kalkman J; Bykov AV; Streekstra GJ; van Leeuwen TG
    Phys Med Biol; 2012 Apr; 57(7):1907-17. PubMed ID: 22421380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity variation assessment of red blood cell aggregation with spectral domain Doppler optical coherence tomography.
    Xu X; Yu L; Chen Z
    Ann Biomed Eng; 2010 Oct; 38(10):3210-7. PubMed ID: 20473568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range.
    Cimalla P; Walther J; Mittasch M; Koch E
    J Biomed Opt; 2011 Nov; 16(11):116020. PubMed ID: 22112125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography.
    Moger J; Matcher SJ; Winlove CP; Shore A
    J Biomed Opt; 2004; 9(5):982-94. PubMed ID: 15447020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography.
    Tang J; Erdener SE; Fu B; Boas DA
    Opt Lett; 2017 Oct; 42(19):3976-3979. PubMed ID: 28957175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography.
    Xu X; Yu L; Chen Z
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2753-8. PubMed ID: 19126454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of Doppler variance imaging for red blood cell aggregation characterization.
    Xu X; Ahn YC; Chen Z
    J Biomed Opt; 2009; 14(6):060507. PubMed ID: 20059238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting spatial variations of erythrocytes by ultrasound backscattering statistical parameters under pulsatile flow.
    Huang CC
    IEEE Trans Biomed Eng; 2011 May; 58(5):1163-71. PubMed ID: 21134805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of rouleaux formation on blood coagulation.
    Riha P; Liao F; Stoltz JF
    Clin Hemorheol Microcirc; 1997; 17(4):341-6. PubMed ID: 9493903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The "black hole" phenomenon in ultrasonic backscattering measurement under pulsatile flow with porcine whole blood in a rigid tube.
    Cao PJ; Paeng DG; Shung KK
    Biorheology; 2001; 38(1):15-26. PubMed ID: 11381162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hemolysis, hematocrit, RBC swelling, and flow rate on light scattering by blood in a 0.26 cm ID transparent tube.
    Tomita M; Gotoh F; Yamamoto M; Tanahashi N; Kobari M
    Biorheology; 1983; 20(5):485-94. PubMed ID: 6677274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doppler power variation from porcine blood under steady and pulsatile flow.
    Paeng DG; Cao PJ; Shung KK
    Ultrasound Med Biol; 2001 Sep; 27(9):1245-54. PubMed ID: 11597366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic and radial variation of the Doppler power from porcine whole blood.
    Paeng DG; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun; 50(6):614-22. PubMed ID: 12839173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast response characteristics of red blood cell aggregation.
    Kaliviotis E; Yianneskis M
    Biorheology; 2008; 45(6):639-49. PubMed ID: 19065011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the "black hole" phenomenon in ultrasound backscattering measurements with red blood cell aggregation.
    Qin Z; Durand LG; Cloutier G
    Ultrasound Med Biol; 1998 Feb; 24(2):245-56. PubMed ID: 9550183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.