BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22192063)

  • 1. Automated RNA structure prediction uncovers a kink-turn linker in double glycine riboswitches.
    Kladwang W; Chou FC; Das R
    J Am Chem Soc; 2012 Jan; 134(3):1404-7. PubMed ID: 22192063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.
    Sherman EM; Esquiaqui J; Elsayed G; Ye JD
    RNA; 2012 Mar; 18(3):496-507. PubMed ID: 22279151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational Flexibility and Dynamics of the Internal Loop and Helical Regions of the Kink-Turn Motif in the Glycine Riboswitch by Site-Directed Spin-Labeling.
    Esquiaqui JM; Sherman EM; Ye JD; Fanucci GE
    Biochemistry; 2016 Aug; 55(31):4295-305. PubMed ID: 27427937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-dependent mobility effects of the Fusobacterium nucleatum glycine riboswitch aptamer II via site-directed spin-labeling (SDSL) electron paramagnetic resonance (EPR).
    Ehrenberger MA; Vieyra A; Esquiaqui JM; Fanucci GE
    Biochem Biophys Res Commun; 2019 Aug; 516(3):839-844. PubMed ID: 31262445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A glycine-dependent riboswitch that uses cooperative binding to control gene expression.
    Mandal M; Lee M; Barrick JE; Weinberg Z; Emilsson GM; Ruzzo WL; Breaker RR
    Science; 2004 Oct; 306(5694):275-9. PubMed ID: 15472076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for pseudoknot formation of class I preQ1 riboswitch aptamers.
    Rieder U; Lang K; Kreutz C; Polacek N; Micura R
    Chembiochem; 2009 May; 10(7):1141-4. PubMed ID: 19382115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated 3D RNA structure prediction using the RNAComposer method for riboswitches.
    Purzycka KJ; Popenda M; Szachniuk M; Antczak M; Lukasiak P; Blazewicz J; Adamiak RW
    Methods Enzymol; 2015; 553():3-34. PubMed ID: 25726459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch.
    Fujita Y; Tanaka T; Furuta H; Ikawa Y
    J Biosci Bioeng; 2012 Feb; 113(2):141-5. PubMed ID: 22074990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-line probing analysis of riboswitches.
    Regulski EE; Breaker RR
    Methods Mol Biol; 2008; 419():53-67. PubMed ID: 18369975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a tertiary interaction important for cooperative ligand binding by the glycine riboswitch.
    Erion TV; Strobel SA
    RNA; 2011 Jan; 17(1):74-84. PubMed ID: 21098652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-dimensional mutate-and-map strategy for non-coding RNA structure.
    Kladwang W; VanLang CC; Cordero P; Das R
    Nat Chem; 2011 Oct; 3(12):954-62. PubMed ID: 22109276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed spin-labeling strategies and electron paramagnetic resonance spectroscopy for large riboswitches.
    Esquiaqui JM; Sherman EM; Ye JD; Fanucci GE
    Methods Enzymol; 2014; 549():287-311. PubMed ID: 25432754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective binding of 2'-F-c-di-GMP to Ct-E88 and Cb-E43, new class I riboswitches from Clostridium tetani and Clostridium botulinum respectively.
    Luo Y; Zhou J; Wang J; Dayie TK; Sintim HO
    Mol Biosyst; 2013 Jun; 9(6):1535-9. PubMed ID: 23559271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch.
    Huang L; Serganov A; Patel DJ
    Mol Cell; 2010 Dec; 40(5):774-86. PubMed ID: 21145485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch.
    Serganov A; Huang L; Patel DJ
    Nature; 2009 Mar; 458(7235):233-7. PubMed ID: 19169240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae.
    Lipfert J; Das R; Chu VB; Kudaravalli M; Boyd N; Herschlag D; Doniach S
    J Mol Biol; 2007 Feb; 365(5):1393-406. PubMed ID: 17118400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.