These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 22192063)

  • 41. Molecular biology. RNAs turn on in tandem.
    Famulok M
    Science; 2004 Oct; 306(5694):233-4. PubMed ID: 15472064
    [No Abstract]   [Full Text] [Related]  

  • 42. CONTRAfold: RNA secondary structure prediction without physics-based models.
    Do CB; Woods DA; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e90-8. PubMed ID: 16873527
    [TBL] [Abstract][Full Text] [Related]  

  • 43. STR2: a structure to string approach for locating G-box riboswitch shapes in pre-selected genes.
    Bergig O; Barash D; Nudler E; Kedem K
    In Silico Biol; 2004; 4(4):593-604. PubMed ID: 15752075
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering and characterization of fluorogenic glycine riboswitches.
    Ketterer S; Gladis L; Kozica A; Meier M
    Nucleic Acids Res; 2016 Jul; 44(12):5983-92. PubMed ID: 27220466
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Biochemical Landscape of Riboswitch Ligands.
    Breaker RR
    Biochemistry; 2022 Feb; 61(3):137-149. PubMed ID: 35068140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SHAPE analysis of small RNAs and riboswitches.
    Rice GM; Busan S; Karabiber F; Favorov OV; Weeks KM
    Methods Enzymol; 2014; 549():165-87. PubMed ID: 25432749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Using Rosetta for RNA homology modeling.
    Watkins AM; Rangan R; Das R
    Methods Enzymol; 2019; 623():177-207. PubMed ID: 31239046
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational methods for prediction of RNA interactions with metal ions and small organic ligands.
    Philips A; Łach G; Bujnicki JM
    Methods Enzymol; 2015; 553():261-85. PubMed ID: 25726469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemical basis of glycine riboswitch cooperativity.
    Kwon M; Strobel SA
    RNA; 2008 Jan; 14(1):25-34. PubMed ID: 18042658
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RNA tertiary interactions in a riboswitch stabilize the structure of a kink turn.
    Schroeder KT; Daldrop P; Lilley DM
    Structure; 2011 Sep; 19(9):1233-40. PubMed ID: 21893284
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational prediction of riboswitches.
    Clote P
    Methods Enzymol; 2015; 553():287-312. PubMed ID: 25726470
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Probing Transient Riboswitch Structures via Single Molecule Accessibility Analysis.
    Welty R; Schmidt A; Walter NG
    Methods Mol Biol; 2023; 2568():37-51. PubMed ID: 36227561
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasticity of the RNA kink turn structural motif.
    Antonioli AH; Cochrane JC; Lipchock SV; Strobel SA
    RNA; 2010 Apr; 16(4):762-8. PubMed ID: 20145044
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference.
    Cordero P; Kladwang W; VanLang CC; Das R
    Biochemistry; 2012 Sep; 51(36):7037-9. PubMed ID: 22913637
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational prediction of riboswitch tertiary structures including pseudoknots by RAGTOP: a hierarchical graph sampling approach.
    Kim N; Zahran M; Schlick T
    Methods Enzymol; 2015; 553():115-35. PubMed ID: 25726463
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative sequence and structure analysis reveals the conservation and diversity of nucleotide positions and their associated tertiary interactions in the riboswitches.
    Appasamy SD; Ramlan EI; Firdaus-Raih M
    PLoS One; 2013; 8(9):e73984. PubMed ID: 24040136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of Glycine Cleavage and Detoxification by a Highly Conserved Glycine Riboswitch in Burkholderia spp.
    Munyati-Othman N; Appasamy SD; Damiri N; Emrizal R; Alipiah NM; Ramlan EI; Firdaus-Raih M
    Curr Microbiol; 2021 Aug; 78(8):2943-2955. PubMed ID: 34076709
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA structure inference through chemical mapping after accidental or intentional mutations.
    Cheng CY; Kladwang W; Yesselman JD; Das R
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9876-9881. PubMed ID: 28851837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mapping RNA structure in vitro using nucleobase-specific probes.
    Sachsenmaier N; Handl S; Debeljak F; Waldsich C
    Methods Mol Biol; 2014; 1086():79-94. PubMed ID: 24136599
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding the errors of SHAPE-directed RNA structure modeling.
    Kladwang W; VanLang CC; Cordero P; Das R
    Biochemistry; 2011 Sep; 50(37):8049-56. PubMed ID: 21842868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.