These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 22192211)
21. Effects of grain, fructose, and histidine on ruminal pH and fermentation products during an induced subacute acidosis protocol. Golder HM; Celi P; Rabiee AR; Heuer C; Bramley E; Miller DW; King R; Lean IJ J Dairy Sci; 2012 Apr; 95(4):1971-82. PubMed ID: 22459843 [TBL] [Abstract][Full Text] [Related]
22. Effects of acarbose on ruminal fermentation, blood metabolites and microbial profile involved in ruminal acidosis in lactating cows fed a high-carbohydrate ration. Blanch M; Calsamiglia S; Devant M; Bach A J Dairy Res; 2010 Feb; 77(1):123-8. PubMed ID: 20053317 [TBL] [Abstract][Full Text] [Related]
23. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows. Chung YH; Walker ND; McGinn SM; Beauchemin KA J Dairy Sci; 2011 May; 94(5):2431-9. PubMed ID: 21524535 [TBL] [Abstract][Full Text] [Related]
24. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production. Eun JS; Beauchemin KA J Dairy Sci; 2005 Jun; 88(6):2140-53. PubMed ID: 15905444 [TBL] [Abstract][Full Text] [Related]
25. Effect of milk allowance on concentrate intake, ruminal environment, and ruminal development in milk-fed Holstein calves. Kristensen NB; Sehested J; Jensen SK; Vestergaard M J Dairy Sci; 2007 Sep; 90(9):4346-55. PubMed ID: 17699055 [TBL] [Abstract][Full Text] [Related]
26. Increasing physically effective fiber content of dairy cow diets through forage proportion versus forage chop length: chewing and ruminal pH. Yang WZ; Beauchemin KA J Dairy Sci; 2009 Apr; 92(4):1603-15. PubMed ID: 19307642 [TBL] [Abstract][Full Text] [Related]
28. Effect of a low-moisture buffer block on ruminal pH in lactating dairy cattle induced with subacute ruminal acidosis. Krause KM; Dhuyvetter DV; Oetzel GR J Dairy Sci; 2009 Jan; 92(1):352-64. PubMed ID: 19109292 [TBL] [Abstract][Full Text] [Related]
29. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: ruminal pH. Dohme F; DeVries TJ; Beauchemin KA J Dairy Sci; 2008 Sep; 91(9):3554-67. PubMed ID: 18765614 [TBL] [Abstract][Full Text] [Related]
30. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. Li S; Khafipour E; Krause DO; Kroeker A; Rodriguez-Lecompte JC; Gozho GN; Plaizier JC J Dairy Sci; 2012 Jan; 95(1):294-303. PubMed ID: 22192209 [TBL] [Abstract][Full Text] [Related]
31. Altering physically effective fiber intake through forage proportion and particle length: chewing and ruminal pH. Yang WZ; Beauchemin KA J Dairy Sci; 2007 Jun; 90(6):2826-38. PubMed ID: 17517723 [TBL] [Abstract][Full Text] [Related]
32. The effects of starch and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed forage proportion. Lechartier C; Peyraud JL J Dairy Sci; 2011 May; 94(5):2440-54. PubMed ID: 21524536 [TBL] [Abstract][Full Text] [Related]
33. Modeling of off-feed periods caused by subacute acidosis in intensive lactating ruminants: application to goats. Desnoyers M; Giger-Reverdin S; Duvaux-Ponter C; Sauvant D J Dairy Sci; 2009 Aug; 92(8):3894-906. PubMed ID: 19620672 [TBL] [Abstract][Full Text] [Related]
34. Effect of induction of subacute ruminal acidosis on milk fat profile and rumen parameters. Colman E; Fokkink WB; Craninx M; Newbold JR; De Baets B; Fievez V J Dairy Sci; 2010 Oct; 93(10):4759-73. PubMed ID: 20855010 [TBL] [Abstract][Full Text] [Related]
35. Duration of time that beef cattle are fed a high-grain diet affects the recovery from a bout of ruminal acidosis: short-chain fatty acid and lactate absorption, saliva production, and blood metabolites. Schwaiger T; Beauchemin KA; Penner GB J Anim Sci; 2013 Dec; 91(12):5743-53. PubMed ID: 24158368 [TBL] [Abstract][Full Text] [Related]
36. Feeding lactose to increase ruminal butyrate and the metabolic status of transition dairy cows. DeFrain JM; Hippen AR; Kalscheur KF; Schingoethe DJ J Dairy Sci; 2006 Jan; 89(1):267-76. PubMed ID: 16357290 [TBL] [Abstract][Full Text] [Related]
37. Effects of varying dietary forage particle size in two concentrate levels on chewing activity, ruminal mat characteristics, and passage in dairy cows. Zebeli Q; Tafaj M; Weber I; Dijkstra J; Steingass H; Drochner W J Dairy Sci; 2007 Apr; 90(4):1929-42. PubMed ID: 17369233 [TBL] [Abstract][Full Text] [Related]
38. Effect of fibrolytic enzyme application to low- and high-concentrate diets on the performance of lactating dairy cattle. Arriola KG; Kim SC; Staples CR; Adesogan AT J Dairy Sci; 2011 Feb; 94(2):832-41. PubMed ID: 21257052 [TBL] [Abstract][Full Text] [Related]
39. The duration of time that beef cattle are fed a high-grain diet affects the recovery from a bout of ruminal acidosis: dry matter intake and ruminal fermentation. Schwaiger T; Beauchemin KA; Penner GB J Anim Sci; 2013 Dec; 91(12):5729-42. PubMed ID: 24158369 [TBL] [Abstract][Full Text] [Related]
40. Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows. Storm AC; Kristensen NB J Dairy Sci; 2010 Sep; 93(9):4223-38. PubMed ID: 20723696 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]