BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 22192217)

  • 1. Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information.
    Pryce JE; Hayes BJ; Goddard ME
    J Dairy Sci; 2012 Jan; 95(1):377-88. PubMed ID: 22192217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling inbreeding and maximizing genetic gain using semi-definite programming with pedigree-based and genomic relationships.
    Schierenbeck S; Pimentel EC; Tietze M; Körte J; Reents R; Reinhardt F; Simianer H; König S
    J Dairy Sci; 2011 Dec; 94(12):6143-52. PubMed ID: 22118102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mating advice system in dairy cattle incorporating genomic information.
    Carthy TR; McCarthy J; Berry DP
    J Dairy Sci; 2019 Sep; 102(9):8210-8220. PubMed ID: 31229287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimum multistage genomic selection in dairy cattle.
    Börner V; Teuscher F; Reinsch N
    J Dairy Sci; 2012 Apr; 95(4):2097-107. PubMed ID: 22459855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sire mating patterns on future genetic merit and inbreeding in a closed beef cattle population.
    Oyama K; Nojima M; Shojo M; Fukushima M; Anada K; Mukai F
    J Anim Breed Genet; 2007 Apr; 124(2):73-80. PubMed ID: 17488357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls.
    de Roos AP; Schrooten C; Veerkamp RF; van Arendonk JA
    J Dairy Sci; 2011 Mar; 94(3):1559-67. PubMed ID: 21338821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic response and inbreeding with different selection methods and mating designs for nucleus breeding programs of dairy cattle.
    Leitch HW; Smith C; Burnside EB; Quinton M
    J Dairy Sci; 1994 Jun; 77(6):1702-18. PubMed ID: 8083430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of selection index calculations to determine selection strategies in genomic breeding programs.
    König S; Swalve HH
    J Dairy Sci; 2009 Oct; 92(10):5292-303. PubMed ID: 19762847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved dairy cattle mating plans at herd level using genomic information.
    Bérodier M; Berg P; Meuwissen T; Boichard D; Brochard M; Ducrocq V
    Animal; 2021 Jan; 15(1):100016. PubMed ID: 33516018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential gains in lifetime net merit from genomic testing of cows, heifers, and calves on commercial dairy farms.
    Weigel KA; Hoffman PC; Herring W; Lawlor TJ
    J Dairy Sci; 2012 Apr; 95(4):2215-25. PubMed ID: 22459867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding.
    Bjelland DW; Weigel KA; Vukasinovic N; Nkrumah JD
    J Dairy Sci; 2013 Jul; 96(7):4697-706. PubMed ID: 23684028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of dairy cattle breeding designs that use genomic selection.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Dairy Sci; 2011 Jan; 94(1):493-500. PubMed ID: 21183061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive ability of direct genomic values for lifetime net merit of Holstein sires using selected subsets of single nucleotide polymorphism markers.
    Weigel KA; de los Campos G; González-Recio O; Naya H; Wu XL; Long N; Rosa GJ; Gianola D
    J Dairy Sci; 2009 Oct; 92(10):5248-57. PubMed ID: 19762843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic breeding value estimation using genetic markers, inferred ancestral haplotypes, and the genomic relationship matrix.
    de Roos AP; Schrooten C; Druet T
    J Dairy Sci; 2011 Sep; 94(9):4708-14. PubMed ID: 21854945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of SNP genotyping to determine pedigree and breed composition of dairy cattle in Kenya.
    Gorbach DM; Makgahlela ML; Reecy JM; Kemp SJ; Baltenweck I; Ouma R; Mwai O; Marshall K; Murdoch B; Moore S; Rothschild MF
    J Anim Breed Genet; 2010 Oct; 127(5):348-51. PubMed ID: 20831558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient parentage assignment and pedigree reconstruction with dense single nucleotide polymorphism data.
    Hayes BJ
    J Dairy Sci; 2011 Apr; 94(4):2114-7. PubMed ID: 21427003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotyping strategies for genomic selection in small dairy cattle populations.
    Jiménez-Montero JA; González-Recio O; Alenda R
    Animal; 2012 Aug; 6(8):1216-24. PubMed ID: 23217224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Producer breeding objectives and optimal sire selection.
    Tozer PR; Stokes JR
    J Dairy Sci; 2002 Dec; 85(12):3518-25. PubMed ID: 12512626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imputation of genotypes with low-density chips and its effect on reliability of direct genomic values in Dutch Holstein cattle.
    Mulder HA; Calus MP; Druet T; Schrooten C
    J Dairy Sci; 2012 Feb; 95(2):876-89. PubMed ID: 22281352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.