BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22192309)

  • 1. An in vitro Förster resonance energy transfer-based high-throughput screening assay for inhibitors of protein-protein interactions in SUMOylation pathway.
    Song Y; Liao J
    Assay Drug Dev Technol; 2012 Aug; 10(4):336-43. PubMed ID: 22192309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions.
    Song Y; Madahar V; Liao J
    Ann Biomed Eng; 2011 Apr; 39(4):1224-34. PubMed ID: 21174150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Förster resonance energy transfer analysis for kinetic determinations of SUMO-specific protease.
    Liu Y; Song Y; Madahar V; Liao J
    Anal Biochem; 2012 Mar; 422(1):14-21. PubMed ID: 22244808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro Förster resonance energy transfer-based high-throughput screening assay identifies inhibitors of SUMOylation E2 Ubc9.
    Wang YZ; Liu X; Way G; Madarha V; Zhou QT; Yang DH; Liao JY; Wang MW
    Acta Pharmacol Sin; 2020 Nov; 41(11):1497-1506. PubMed ID: 32341466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic determinations of SUMOylation activation intermediates and dynamics by a sensitive and quantitative FRET assay.
    Song Y; Liao J
    Mol Biosyst; 2012 Jun; 8(6):1723-9. PubMed ID: 22466055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein interaction affinity determination by quantitative FRET technology.
    Song Y; Rodgers VG; Schultz JS; Liao J
    Biotechnol Bioeng; 2012 Nov; 109(11):2875-83. PubMed ID: 22711490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal calibration Förster resonance energy transfer assay: a real-time approach for determining protease kinetics.
    Jiang L; Liu Y; Song Y; Saavedra AN; Pan S; Xiang W; Liao J
    Sensors (Basel); 2013 Apr; 13(4):4553-70. PubMed ID: 23567524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel robust quantitative Förster resonance energy transfer assay for protease SENP2 kinetics determination against its all natural substrates.
    Liu Y; Shen Y; Zheng S; Liao J
    Mol Biosyst; 2015 Dec; 11(12):3407-14. PubMed ID: 26486594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A linker strategy for trans-FRET assay to determine activation intermediate of NEDDylation cascade.
    Malik-Chaudhry HK; Saavedra A; Liao J
    Biotechnol Bioeng; 2014 Jul; 111(7):1288-95. PubMed ID: 24415255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro FRET-based assay for the analysis of SUMO conjugation and isopeptidase cleavage.
    Stankovic-Valentin N; Kozaczkiewicz L; Curth K; Melchior F
    Methods Mol Biol; 2009; 497():241-51. PubMed ID: 19107422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative FRET (Förster Resonance Energy Transfer) analysis for SENP1 protease kinetics determination.
    Liu Y; Liao J
    J Vis Exp; 2013 Feb; (72):e4430. PubMed ID: 23463095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of SUMO1 and ATP affinity for the SUMO E1by quantitative FRET technology.
    Wiryawan H; Dan K; Etuale M; Shen Y; Liao J
    Biotechnol Bioeng; 2015 Apr; 112(4):652-8. PubMed ID: 25333792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a high-throughput screening assay for inhibitors of small ubiquitin-like modifier proteases.
    Yang W; Wang L; Paschen W
    J Biomol Screen; 2013 Jun; 18(5):621-8. PubMed ID: 23470489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).
    Kim YP; Jin Z; Kim E; Park S; Oh YH; Kim HS
    Biochem Biophys Res Commun; 2009 May; 382(3):530-4. PubMed ID: 19289109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A toolbox approach to high-throughput TR-FRET-based SUMOylation and DeSUMOylation assays.
    Carlson CB; Horton RA; Vogel KW
    Assay Drug Dev Technol; 2009 Aug; 7(4):348-55. PubMed ID: 19656081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of sumoylation inhibitors targeting a predicted pocket in Ubc9.
    Kumar A; Ito A; Hirohama M; Yoshida M; Zhang KY
    J Chem Inf Model; 2014 Oct; 54(10):2784-93. PubMed ID: 25191977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fluorescent In Vitro Assay to Investigate Paralog-Specific SUMO Conjugation.
    Eisenhardt N; Chaugule VK; Pichler A
    Methods Mol Biol; 2016; 1475():67-78. PubMed ID: 27631798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of the Recombinant RanBP2 SUMO E3 Ligase Complex.
    Ritterhoff T; Das H; Hao Y; Sakin V; Flotho A; Werner A; Melchior F
    Methods Mol Biol; 2016; 1475():41-54. PubMed ID: 27631796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation.
    Wiechmann S; Gärtner A; Kniss A; Stengl A; Behrends C; Rogov VV; Rodriguez MS; Dötsch V; Müller S; Ernst A
    J Biol Chem; 2017 Sep; 292(37):15340-15351. PubMed ID: 28784659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a High-Throughput Assay for Inhibitors of the Polo-Box Domain of Polo-Like Kinase 1 Based on Time-Resolved Fluorescence Energy Transfer.
    Kim TG; Lee JH; Lee MY; Kim KU; Lee JH; Park CH; Lee BH; Oh KS
    Biol Pharm Bull; 2017; 40(9):1454-1462. PubMed ID: 28867728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.