BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22192343)

  • 1. Impact of injection system design on ISCO performance with permanganate--mathematical modeling results.
    Cha KY; Borden RC
    J Contam Hydrol; 2012 Feb; 128(1-4):33-46. PubMed ID: 22192343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics and applications of controlled-release KMnO4 for groundwater remediation.
    Lee ES; Schwartz FW
    Chemosphere; 2007 Feb; 66(11):2058-66. PubMed ID: 17140635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones.
    Heiderscheidt JL; Siegrist RL; Illangasekare TH
    J Contam Hydrol; 2008 Nov; 102(1-2):3-16. PubMed ID: 18774622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate.
    Henderson TH; Mayer KU; Parker BL; Al TA
    J Contam Hydrol; 2009 May; 106(3-4):195-211. PubMed ID: 19361885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling improved ISCO treatment of low permeable zones via viscosity modification: assessment of system variables.
    Kananizadeh N; Chokejaroenrat C; Li Y; Comfort S
    J Contam Hydrol; 2015 Feb; 173():25-37. PubMed ID: 25528134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based evaluation of controlled-release systems in the remediation of dissolved plumes in groundwater.
    Lee ES; Liu G; Schwartz FW; Kim Y; Ibaraki M
    Chemosphere; 2008 May; 72(2):165-73. PubMed ID: 18377947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic in situ oxidation remediation: assessment of parameter sensitivities and the influence of aquifer heterogeneity on remediation efficiency.
    Wu MZ; Reynolds DA; Fourie A; Prommer H; Thomas DG
    J Contam Hydrol; 2012 Aug; 136-137():72-85. PubMed ID: 22684143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time series geophysical monitoring of permanganate injections and in situ chemical oxidation of PCE, OU1 area, Savage Superfund Site, Milford, NH, USA.
    Harte PT; Smith TE; Williams JH; Degnan JR
    J Contam Hydrol; 2012 May; 132():58-74. PubMed ID: 22459605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of volatile organic vapours in air by solid potassium permanganate.
    Mahmoodlu MG; Hartog N; Majid Hassanizadeh S; Raoof A
    Chemosphere; 2013 Jun; 91(11):1534-8. PubMed ID: 23357868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of potassium permanganate consumption and PCE oxidation in subsurface materials.
    Hønning J; Broholm MM; Bjerg PL
    J Contam Hydrol; 2007 Mar; 90(3-4):221-39. PubMed ID: 17140696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system.
    Liang SH; Kao CM; Kuo YC; Chen KF; Yang BM
    Water Res; 2011 Apr; 45(8):2496-506. PubMed ID: 21396673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of controlled-release KMnO4 (CRP) barrier system for groundwater remediation: a pilot-scale flow-tank study.
    Lee ES; Woo NC; Schwartz FW; Lee BS; Lee KC; Woo MH; Kim JH; Kim HK
    Chemosphere; 2008 Mar; 71(5):902-10. PubMed ID: 18207217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.
    Liang SH; Chen KF; Wu CS; Lin YH; Kao CM
    Water Res; 2014 May; 54():149-58. PubMed ID: 24568784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of TCE-contaminated groundwater using KMnO
    Yang ZH; Ou JH; Dong CD; Chen CW; Lin WH; Kao CM
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34027-34038. PubMed ID: 30232775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.
    Christenson MD; Kambhu A; Comfort SD
    Chemosphere; 2012 Oct; 89(6):680-7. PubMed ID: 22784864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of potassium permanganate demand variation with depth for oxidation-remediation of soils from a PAHs-contaminated coking plant.
    Liao X; Zhao D; Yan X
    J Hazard Mater; 2011 Oct; 193():164-70. PubMed ID: 21820801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Follow-up study on the effects on well chemistry from biological and chemical remediation of chlorinated solvents.
    Scott D; Apblett A; Materer NF
    J Environ Monit; 2011 Sep; 13(9):2521-6. PubMed ID: 21769369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation.
    Lemming G; Chambon JC; Binning PJ; Bjerg PL
    J Environ Manage; 2012 Dec; 112():392-403. PubMed ID: 22985675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study.
    Kao CM; Huang KD; Wang JY; Chen TY; Chien HY
    J Hazard Mater; 2008 May; 153(3):919-27. PubMed ID: 18006224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.