These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22192526)

  • 61. A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks.
    Monteiro PT; Dumas E; Besson B; Mateescu R; Page M; Freitas AT; de Jong H
    BMC Bioinformatics; 2009 Dec; 10():450. PubMed ID: 20042075
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The function of architecture and logic in developmental gene regulatory networks.
    Peter IS
    Curr Top Dev Biol; 2020; 139():267-295. PubMed ID: 32450963
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Basins of Attraction, Commitment Sets, and Phenotypes of Boolean Networks.
    Klarner H; Heinitz F; Nee S; Siebert H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1115-1124. PubMed ID: 30575543
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Classification of State Trajectories in Gene Regulatory Networks.
    Karbalayghareh A; Braga-Neto U; Hua J; Dougherty ER
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):68-82. PubMed ID: 27740496
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Boolean function metrics can assist modelers to check and choose logical rules.
    Zobolas J; Monteiro PT; Kuiper M; Flobak Å
    J Theor Biol; 2022 Apr; 538():111025. PubMed ID: 35085537
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pillars of biology: Boolean modeling of gene-regulatory networks.
    Thakar J
    J Theor Biol; 2024 Feb; 578():111682. PubMed ID: 38008156
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Populations of genetic circuits are unable to find the fittest solution in a multilevel genotype-phenotype map.
    Catalán P; Manrubia S; Cuesta JA
    J R Soc Interface; 2020 Jun; 17(167):20190843. PubMed ID: 32486956
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions.
    Albert R; Thakar J
    Wiley Interdiscip Rev Syst Biol Med; 2014; 6(5):353-69. PubMed ID: 25269159
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dynamic Modeling of Transcriptional Gene Regulatory Networks.
    Handzlik JE; Loh YL; Manu
    Methods Mol Biol; 2021; 2328():67-97. PubMed ID: 34251620
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inference of dynamic spatial GRN models with multi-GPU evolutionary computation.
    Mousavi R; Konuru SH; Lobo D
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834216
    [TBL] [Abstract][Full Text] [Related]  

  • 71. GESTODIFFERENT: a Cytoscape plugin for the generation and the identification of gene regulatory networks describing a stochastic cell differentiation process.
    Antoniotti M; Bader GD; Caravagna G; Crippa S; Graudenzi A; Mauri G
    Bioinformatics; 2013 Feb; 29(4):513-4. PubMed ID: 23292740
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fixed-points in random Boolean networks: The impact of parallelism in the Barabási-Albert scale-free topology case.
    Moisset de Espanés P; Osses A; Rapaport I
    Biosystems; 2016 Dec; 150():167-176. PubMed ID: 27765600
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Learning Asynchronous Boolean Networks From Single-Cell Data Using Multiobjective Cooperative Genetic Programming.
    Gao S; Sun C; Xiang C; Qin K; Lee TH
    IEEE Trans Cybern; 2022 May; 52(5):2916-2930. PubMed ID: 33027020
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cytoskeletal logic: a model for molecular computation via Boolean operations in microtubules and microtubule-associated proteins.
    Lahoz-Beltra R; Hameroff SR; Dayhoff JE
    Biosystems; 1993; 29(1):1-23. PubMed ID: 8318677
    [TBL] [Abstract][Full Text] [Related]  

  • 75. BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.
    Mcclenny LD; Imani M; Braga-Neto UM
    BMC Bioinformatics; 2017 Nov; 18(1):519. PubMed ID: 29178844
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Networking development by Boolean logic.
    Tu S; Pederson T; Weng Z
    Nucleus; 2013; 4(2):89-91. PubMed ID: 23412653
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modeling signaling-dependent pluripotency with Boolean logic to predict cell fate transitions.
    Yachie-Kinoshita A; Onishi K; Ostblom J; Langley MA; Posfai E; Rossant J; Zandstra PW
    Mol Syst Biol; 2018 Jan; 14(1):e7952. PubMed ID: 29378814
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Employing decomposable partially observable Markov decision processes to control gene regulatory networks.
    Erdogdu U; Polat F; Alhajj R
    Artif Intell Med; 2017 Nov; 83():14-34. PubMed ID: 28733120
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Modeling Rho GTPase Dynamics Using Boolean Logic.
    Hetmanski JHR; Schwartz JM; Caswell PT
    Methods Mol Biol; 2018; 1821():37-46. PubMed ID: 30062403
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying NetGenerator V2.0.
    Weber M; Henkel SG; Vlaic S; Guthke R; van Zoelen EJ; Driesch D
    BMC Syst Biol; 2013 Jan; 7():1. PubMed ID: 23280066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.