These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22192538)

  • 1. Single cell viability measurements in 3D scaffolds using in situ label free imaging by optical coherence microscopy.
    Dunkers JP; Lee YJ; Chatterjee K
    Biomaterials; 2012 Mar; 33(7):2119-26. PubMed ID: 22192538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro characterization of three-dimensional scaffolds seeded with human bone marrow stromal cells for tissue engineered growth of bone: mission impossible? A methodological approach.
    Materna T; Rolf HJ; Napp J; Schulz J; Gelinsky M; Schliephake H
    Clin Oral Implants Res; 2008 Apr; 19(4):379-86. PubMed ID: 18324959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL
    J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach.
    Matsusaki M; Yoshida H; Akashi M
    Biomaterials; 2007 Jun; 28(17):2729-37. PubMed ID: 17336376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human bone marrow stroma stem cell distribution in calcium carbonate scaffolds using two different seeding methods.
    Zhu H; Schulz J; Schliephake H
    Clin Oral Implants Res; 2010 Feb; 21(2):182-8. PubMed ID: 19958378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motility imaging via optical coherence phase microscopy enables label-free monitoring of tissue growth and viability in 3D tissue-engineering scaffolds.
    Holmes C; Tabrizian M; Bagnaninchi PO
    J Tissue Eng Regen Med; 2015 May; 9(5):641-5. PubMed ID: 23401413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a polyelectrolyte complex coacervation method to improve seeding efficiency of bone marrow stromal cells in a 3D culture system.
    Toh YC; Ho ST; Zhou Y; Hutmacher DW; Yu H
    Biomaterials; 2005 Jul; 26(19):4149-60. PubMed ID: 15664642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice].
    Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL
    Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels.
    Ghezzi CE; Muja N; Marelli B; Nazhat SN
    Biomaterials; 2011 Jul; 32(21):4761-72. PubMed ID: 21514662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix.
    Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT
    Spine J; 2006; 6(6):615-23. PubMed ID: 17088192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular responses to degradable cyclic acetal modified PEG hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    J Biomed Mater Res A; 2009 Sep; 90(3):863-73. PubMed ID: 18615467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modularly assembled porous cell-laden hydrogels.
    Liu B; Liu Y; Lewis AK; Shen W
    Biomaterials; 2010 Jun; 31(18):4918-25. PubMed ID: 20338634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-engineered constructs based on SPCL scaffolds cultured with goat marrow cells: functionality in femoral defects.
    Rodrigues MT; Gomes ME; Viegas CA; Azevedo JT; Dias IR; Guzón FM; Reis RL
    J Tissue Eng Regen Med; 2011 Jan; 5(1):41-9. PubMed ID: 20603869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation.
    Lode A; Bernhardt A; Gelinsky M
    J Tissue Eng Regen Med; 2008 Oct; 2(7):400-7. PubMed ID: 18756590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering.
    Yang X; Tare RS; Partridge KA; Roach HI; Clarke NM; Howdle SM; Shakesheff KM; Oreffo RO
    J Bone Miner Res; 2003 Jan; 18(1):47-57. PubMed ID: 12510805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marrow stromal fibroblastic cell cultivation in vitro on decellularized bone marrow extracellular matrix.
    Dutra TF; French SW
    Exp Mol Pathol; 2010 Feb; 88(1):58-66. PubMed ID: 19778536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing.
    Fedorovich NE; De Wijn JR; Verbout AJ; Alblas J; Dhert WJ
    Tissue Eng Part A; 2008 Jan; 14(1):127-33. PubMed ID: 18333811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.