These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22192538)

  • 41. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study.
    Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y
    Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A tissue-like construct of human bone marrow MSCs composite scaffold support in vivo ectopic bone formation.
    Ben-David D; Kizhner T; Livne E; Srouji S
    J Tissue Eng Regen Med; 2010 Jan; 4(1):30-7. PubMed ID: 19842114
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stromal cell-derived factor-1alpha-directed chemoattraction of transiently CXCR4-overexpressing bone marrow stromal cells into functionalized three-dimensional biomimetic scaffolds.
    Thieme S; Ryser M; Gentsch M; Navratiel K; Brenner S; Stiehler M; Rölfing J; Gelinsky M; Rösen-Wolff A
    Tissue Eng Part C Methods; 2009 Dec; 15(4):687-96. PubMed ID: 19260802
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Preliminary study of constructing tissue-engineered cartilage with the endoskeletal scaffold of HDPE by bone marrow stromal cells].
    Zhu L; Jiang H; Zhou GD; Wu YJ; Luo XS
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2008 Sep; 24(5):377-81. PubMed ID: 19119642
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Osteogenic differentiation of bone marrow stromal cells on poly(epsilon-caprolactone) nanofiber scaffolds.
    Ruckh TT; Kumar K; Kipper MJ; Popat KC
    Acta Biomater; 2010 Aug; 6(8):2949-59. PubMed ID: 20144747
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physiological formation of fluorescent and conductive protein microfibers in live fibroblasts upon spontaneous uptake of biocompatible fluorophores.
    Viola I; Palamà IE; Coluccia AM; Biasiucci M; Dozza B; Lucarelli E; Di Maria F; Barbarella G; Gigli G
    Integr Biol (Camb); 2013 Aug; 5(8):1057-66. PubMed ID: 23806977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring local cell viability in engineered tissues: a fast, quantitative, and nondestructive approach.
    Breuls RG; Mol A; Petterson R; Oomens CW; Baaijens FP; Bouten CV
    Tissue Eng; 2003 Apr; 9(2):269-81. PubMed ID: 12740089
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-dimensional, label-free cell viability measurements in tissue engineering scaffolds using optical coherence tomography.
    Babakhanova G; Agrawal A; Arora D; Horenberg A; Budhathoki JB; Dunkers JP; Chalfoun J; Bajcsy P; Simon CG
    J Biomed Mater Res A; 2023 Aug; 111(8):1279-1291. PubMed ID: 36916776
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellular transplantation for the nervous system: impact of time after preparation on cell viability and survival.
    Gobbel GT; Kondziolka D; Fellows-Mayle W; Uram M
    J Neurosurg; 2010 Sep; 113(3):666-72. PubMed ID: 19911893
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Culturing fibroblasts in 3D human hair keratin hydrogels.
    Wang S; Wang Z; Foo SE; Tan NS; Yuan Y; Lin W; Zhang Z; Ng KW
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5187-98. PubMed ID: 25690726
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxygen-sensing scaffolds for 3-dimensional cell and tissue culture.
    Jenkins J; Dmitriev RI; Morten K; McDermott KW; Papkovsky DB
    Acta Biomater; 2015 Apr; 16():126-35. PubMed ID: 25653216
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessment of cell viability in three-dimensional scaffolds using cellular auto-fluorescence.
    Dittmar R; Potier E; van Zandvoort M; Ito K
    Tissue Eng Part C Methods; 2012 Mar; 18(3):198-204. PubMed ID: 21981657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy.
    Pampaloni F; Ansari N; Stelzer EH
    Cell Tissue Res; 2013 Apr; 352(1):161-77. PubMed ID: 23443300
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluorescent optical fiber sensors for cell viability monitoring.
    Sergachev I; Rusanov A; Trushkin E; Sakharov D; Marx U; Tonevitsky A
    Analyst; 2013 Jul; 138(14):4066-9. PubMed ID: 23662302
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field.
    Yang G; Long H; Ren X; Ma K; Xiao Z; Wang Y; Guo Y
    Dev Growth Differ; 2017 Feb; 59(2):70-82. PubMed ID: 28185267
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural and functional optical imaging of three-dimensional engineered tissue development.
    Tan W; Sendemir-Urkmez A; Fahrner LJ; Jamison R; Leckband D; Boppart SA
    Tissue Eng; 2004; 10(11-12):1747-56. PubMed ID: 15684683
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Directed growth of fibroblasts into three dimensional micropatterned geometries via self-assembling scaffolds.
    Jamal M; Bassik N; Cho JH; Randall CL; Gracias DH
    Biomaterials; 2010 Mar; 31(7):1683-90. PubMed ID: 20022106
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-dimensional hydrogel constructs for exposing cells to nanoparticles.
    Mansfield E; Oreskovic TL; Rentz NS; Jeerage KM
    Nanotoxicology; 2014 Jun; 8(4):394-403. PubMed ID: 23611448
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-Cell Live Imaging.
    Hiratsuka T; Komatsu N
    Methods Mol Biol; 2019; 1979():409-421. PubMed ID: 31028651
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic 3D cell culture via a chemoselective photoactuated ligand.
    Westcott NP; Luo W; Goldstein J; Yousaf MN
    Biointerphases; 2014 Sep; 9(3):031005. PubMed ID: 25280846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.