These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
540 related articles for article (PubMed ID: 22192607)
1. Improving speech perception in noise for children with cochlear implants. Gifford RH; Olund AP; DeJong M J Am Acad Audiol; 2011 Oct; 22(9):623-632. PubMed ID: 22192607 [TBL] [Abstract][Full Text] [Related]
2. Speech perception for adult cochlear implant recipients in a realistic background noise: effectiveness of preprocessing strategies and external options for improving speech recognition in noise. Gifford RH; Revit LJ J Am Acad Audiol; 2010; 21(7):441-51; quiz 487-8. PubMed ID: 20807480 [TBL] [Abstract][Full Text] [Related]
3. Effect of different signal-processing options on speech-in-noise recognition for cochlear implant recipients with the cochlear CP810 speech processor. Potts LG; Kolb KA J Am Acad Audiol; 2014 Apr; 25(4):367-79. PubMed ID: 25126684 [TBL] [Abstract][Full Text] [Related]
4. The Effects of Preprocessing Strategies for Pediatric Cochlear Implant Recipients. Rakszawski B; Wright R; Cadieux JH; Davidson LS; Brenner C J Am Acad Audiol; 2016 Feb; 27(2):85-102. PubMed ID: 26905529 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of different signal processing options in unilateral and bilateral cochlear freedom implant recipients using R-Space background noise. Brockmeyer AM; Potts LG J Am Acad Audiol; 2011 Feb; 22(2):65-80. PubMed ID: 21463562 [TBL] [Abstract][Full Text] [Related]
6. The effect of front-end processing on cochlear implant performance of children. Wolfe J; Schafer EC; John A; Hudson M Otol Neurotol; 2011 Jun; 32(4):533-8. PubMed ID: 21436756 [TBL] [Abstract][Full Text] [Related]
7. Benefits of Adaptive Signal Processing in a Commercially Available Cochlear Implant Sound Processor. Wolfe J; Neumann S; Marsh M; Schafer E; Lianos L; Gilden J; O'Neill L; Arkis P; Menapace C; Nel E; Jones M Otol Neurotol; 2015 Aug; 36(7):1181-90. PubMed ID: 26049314 [TBL] [Abstract][Full Text] [Related]
8. Performance benefits for adults using a cochlear implant with adaptive dynamic range optimization (ADRO): a comparative study. Müller-Deile J; Kiefer J; Wyss J; Nicolai J; Battmer R Cochlear Implants Int; 2008 Mar; 9(1):8-26. PubMed ID: 18300224 [TBL] [Abstract][Full Text] [Related]
9. Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems. Firszt JB; Holden LK; Skinner MW; Tobey EA; Peterson A; Gaggl W; Runge-Samuelson CL; Wackym PA Ear Hear; 2004 Aug; 25(4):375-87. PubMed ID: 15292777 [TBL] [Abstract][Full Text] [Related]
10. Optimization of programming parameters in children with the advanced bionics cochlear implant. Baudhuin J; Cadieux J; Firszt JB; Reeder RM; Maxson JL J Am Acad Audiol; 2012 May; 23(5):302-12. PubMed ID: 22533974 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of speech recognition in noise with cochlear implants and dynamic FM. Wolfe J; Schafer EC; Heldner B; Mülder H; Ward E; Vincent B J Am Acad Audiol; 2009; 20(7):409-21. PubMed ID: 19928395 [TBL] [Abstract][Full Text] [Related]
13. Benefit of the UltraZoom beamforming technology in noise in cochlear implant users. Mosnier I; Mathias N; Flament J; Amar D; Liagre-Callies A; Borel S; Ambert-Dahan E; Sterkers O; Bernardeschi D Eur Arch Otorhinolaryngol; 2017 Sep; 274(9):3335-3342. PubMed ID: 28664331 [TBL] [Abstract][Full Text] [Related]
14. Optimizing dynamic range in children using the nucleus cochlear implant. Dawson PW; Decker JA; Psarros CE Ear Hear; 2004 Jun; 25(3):230-41. PubMed ID: 15179114 [TBL] [Abstract][Full Text] [Related]
15. Benefits of bilateral electrical stimulation with the nucleus cochlear implant in adults: 6-month postoperative results. Laszig R; Aschendorff A; Stecker M; Müller-Deile J; Maune S; Dillier N; Weber B; Hey M; Begall K; Lenarz T; Battmer RD; Böhm M; Steffens T; Strutz J; Linder T; Probst R; Allum J; Westhofen M; Doering W Otol Neurotol; 2004 Nov; 25(6):958-68. PubMed ID: 15547426 [TBL] [Abstract][Full Text] [Related]
16. Predicting Matrix Test Effectiveness for Evaluating Auditory Performance in Noise Using Pure-Tone Audiometry and Speech Recognition in Quiet in Cochlear Implant Recipients. Flament J; De Seta D; Russo FY; Bestel J; Sterkers O; Ferrary E; Nguyen Y; Mosnier I; Torres R Audiol Neurootol; 2024; 29(5):408-417. PubMed ID: 38527427 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of speech reception threshold in noise in young Cochlear™ Nucleus Razza S; Zaccone M; Meli A; Cristofari E Int J Pediatr Otorhinolaryngol; 2017 Dec; 103():71-75. PubMed ID: 29224769 [TBL] [Abstract][Full Text] [Related]
18. Conversion of adult Nucleus® 5 cochlear implant users to the Nucleus® 6 system. De Ceulaer G; Swinnen F; Pascoal D; Philips B; Killian M; James C; Govaerts PJ; Dhooge I Cochlear Implants Int; 2015 Jul; 16(4):222-32. PubMed ID: 25284643 [TBL] [Abstract][Full Text] [Related]
19. Combining directional microphone and single-channel noise reduction algorithms: a clinical evaluation in difficult listening conditions with cochlear implant users. Hersbach AA; Arora K; Mauger SJ; Dawson PW Ear Hear; 2012; 33(4):e13-23. PubMed ID: 22555182 [TBL] [Abstract][Full Text] [Related]
20. Effect of Microphone Configuration and Sound Source Location on Speech Recognition for Adult Cochlear Implant Users with Current-Generation Sound Processors. Dwyer RT; Roberts J; Gifford RH J Am Acad Audiol; 2020 Sep; 31(8):578-589. PubMed ID: 32340055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]