BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 22192612)

  • 21. Prussian blue mediated amplification combined with signal enhancement of ordered mesoporous carbon for ultrasensitive and specific quantification of metolcarb by a three-dimensional molecularly imprinted electrochemical sensor.
    Yang Y; Cao Y; Wang X; Fang G; Wang S
    Biosens Bioelectron; 2015 Feb; 64():247-54. PubMed ID: 25240126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A DNA biosensor based on graphene paste electrode modified with Prussian blue and chitosan.
    Bo Y; Wang W; Qi J; Huang S
    Analyst; 2011 May; 136(9):1946-51. PubMed ID: 21416098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of graphene oxide doped eggshell membrane bioplatform modified Prussian blue nanoparticles as a sensitive hydrogen peroxide sensor.
    Mohammad-Rezaei R; Razmi H; Dehgan-Reyhan S
    Colloids Surf B Biointerfaces; 2014 Jun; 118():188-93. PubMed ID: 24742966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing.
    Xian Y; Hu Y; Liu F; Xian Y; Feng L; Jin L
    Biosens Bioelectron; 2007 Jun; 22(12):2827-33. PubMed ID: 17188857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA as a support for glucose oxidase immobilization at Prussian blue-modified glassy carbon electrode in biosensor preparation.
    Kafi AK; Lee DY; Park SH; Kwon YS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3539-42. PubMed ID: 17252806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prussian blue-modified nanoporous gold film electrode for amperometric determination of hydrogen peroxide.
    Ghaderi S; Mehrgardi MA
    Bioelectrochemistry; 2014 Aug; 98():64-9. PubMed ID: 24717776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stability improvement of Prussian blue in nonacidic solutions via an electrochemical post-treatment method and the shape evolution of Prussian blue from nanospheres to nanocubes.
    Wang Z; Yang H; Gao B; Tong Y; Zhang X; Su L
    Analyst; 2014 Mar; 139(5):1127-33. PubMed ID: 24416762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amperometric microsensor for direct probing of ascorbic acid in human gastric juice.
    Hutton EA; PauliukaitÄ— R; Hocevar SB; Ogorevc B; Smyth MR
    Anal Chim Acta; 2010 Sep; 678(2):176-82. PubMed ID: 20888449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on immunosensor based on gold nanoparticles/chitosan and MnO2 nanoparticles composite membrane/Prussian blue modified gold electrode.
    Ling S; Yuan R; Chai Y; Zhang T
    Bioprocess Biosyst Eng; 2009 Apr; 32(3):407-14. PubMed ID: 18923847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene oxide sheet-prussian blue nanocomposites: green synthesis and their extraordinary electrochemical properties.
    Liu XW; Yao ZJ; Wang YF; Wei XW
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):508-12. PubMed ID: 20719478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and characterization of Prussian blue nanowire array and bioapplication for glucose biosensing.
    Qu F; Shi A; Yang M; Jiang J; Shen G; Yu R
    Anal Chim Acta; 2007 Dec; 605(1):28-33. PubMed ID: 18022407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of cetyltrimethyl ammonium bromide on electrochemical properties of thyroxine reduction at carbon nanotubes modified electrode.
    Wang F; Fei J; Hu S
    Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):95-101. PubMed ID: 15542346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin.
    Zhang L; Jiang X; Wang E; Dong S
    Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrocatalytic properties of prussian blue nanoparticles supported on poly(m-aminobenzenesulphonic acid)-functionalised single-walled carbon nanotubes towards the detection of dopamine.
    Adekunle AS; Farah AM; Pillay J; Ozoemena KI; Mamba BB; Agboola BO
    Colloids Surf B Biointerfaces; 2012 Jun; 95():186-94. PubMed ID: 22475526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct electron-transfer of myoglobin within a new zwitterionic gemini surfactant film and its analytical application for H2O2 detection.
    Wang F; Hu S
    Colloids Surf B Biointerfaces; 2008 Jun; 63(2):262-8. PubMed ID: 18321683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A glucose biosensor based on Prussian blue/chitosan hybrid film.
    Wang X; Gu H; Yin F; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1527-30. PubMed ID: 19010659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acetylcholinesterase sensor based on screen-printed carbon electrode modified with prussian blue.
    Suprun E; Evtugyn G; Budnikov H; Ricci F; Moscone D; Palleschi G
    Anal Bioanal Chem; 2005 Oct; 383(4):597-604. PubMed ID: 16163484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vertically-aligned Prussian blue/carbon nanotube nanocomposites on a carbon microfiber as a biosensing scaffold for ultrasensitively detecting glucose.
    Gong K
    J Colloid Interface Sci; 2013 Nov; 410():152-7. PubMed ID: 23998372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of cetyltrimethyl ammonium bromide (CTAB) in determination of dopamine and ascorbic acid using carbon paste electrode modified with tin hexacyanoferrate.
    Hosseinzadeh R; Sabzi RE; Ghasemlu K
    Colloids Surf B Biointerfaces; 2009 Feb; 68(2):213-7. PubMed ID: 19084387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode.
    Ho KC; Chen CY; Hsu HC; Chen LC; Shiesh SC; Lin XZ
    Biosens Bioelectron; 2004 Jul; 20(1):3-8. PubMed ID: 15142570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.