BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 22192612)

  • 41. Ion permeability of polydopamine films revealed using a Prussian blue-based electrochemical method.
    Gao B; Su L; Tong Y; Guan M; Zhang X
    J Phys Chem B; 2014 Nov; 118(44):12781-7. PubMed ID: 25317484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prussian blue modified glassy carbon electrodes-study on operational stability and its application as a sucrose biosensor.
    Haghighi B; Varma S; Alizadeh Sh FM; Yigzaw Y; Gorton L
    Talanta; 2004 Sep; 64(1):3-12. PubMed ID: 18969561
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel and simple biomolecules immobilization method: electro-deposition ZrO2 doped with HRP for fabrication of hydrogen peroxide biosensor.
    Tong Z; Yuan R; Chai Y; Xie Y; Chen S
    J Biotechnol; 2007 Feb; 128(3):567-75. PubMed ID: 17210197
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of electrode materials for the detection of rapid hydrogen peroxide fluctuations using background-subtracted fast scan cyclic voltammetry.
    Roberts JG; Hamilton KL; Sombers LA
    Analyst; 2011 Sep; 136(17):3550-6. PubMed ID: 21727955
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan.
    Tangkuaram T; Ponchio C; Kangkasomboon T; Katikawong P; Veerasai W
    Biosens Bioelectron; 2007 Apr; 22(9-10):2071-8. PubMed ID: 17046233
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical behavior of biocatalytical composite based on heme-proteins, didodecyldimethylammonium bromide and room-temperature ionic liquid.
    Xu Y; Hu C; Hu S
    Anal Chim Acta; 2010 Mar; 663(1):19-26. PubMed ID: 20172091
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices.
    Fiorito PA; Gonçales VR; Ponzio EA; de Torresi SI
    Chem Commun (Camb); 2005 Jan; (3):366-8. PubMed ID: 15645039
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic Prussian blue catalytic polymer and the enzymatic effect of glucose oxidase.
    Li J; Li Y; Zhang Y; Wei G
    Anal Chem; 2012 Feb; 84(4):1888-93. PubMed ID: 22242638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prussian blue electrodeposited on nano Ag-coated multiwalled carbon nanotubes composite for the determination of hydrogen peroxide.
    Zhai X; Gao Z
    Anal Sci; 2010; 26(3):343-7. PubMed ID: 20215684
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication and characterization of Meldola's blue/zinc oxide hybrid electrodes for efficient detection of the reduced form of nicotinamide adenine dinucleotide at low potential.
    Kumar SA; Chen SM
    Anal Chim Acta; 2007 May; 592(1):36-44. PubMed ID: 17499068
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prussian blue @ platinum nanoparticles/graphite felt nanocomposite electrodes: application as hydrogen peroxide sensor.
    Han L; Tricard S; Fang J; Zhao J; Shen W
    Biosens Bioelectron; 2013 May; 43():120-4. PubMed ID: 23291615
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amperometric immunosensor based on multiwalled carbon nanotubes/Prussian blue/nanogold-modified electrode for determination of α-fetoprotein.
    Jiang W; Yuan R; Chai YQ; Yin B
    Anal Biochem; 2010 Dec; 407(1):65-71. PubMed ID: 20678463
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Compact microcubic structures platform based on self-assembly Prussian blue nanoparticles with highly tuneable conductivity.
    Cantanhêde Silva W; Guix M; Alarcón Angeles G; Merkoçi A
    Phys Chem Chem Phys; 2010 Dec; 12(47):15505-11. PubMed ID: 20976355
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrochemical properties of catechin at a single-walled carbon nanotubes-cetylramethylammonium bromide modified electrode.
    Yang LJ; Tang C; Xiong HY; Zhang XH; Wang SF
    Bioelectrochemistry; 2009 Jun; 75(2):158-62. PubMed ID: 19383571
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2.
    Qiu JD; Peng HZ; Liang RP; Li J; Xia XH
    Langmuir; 2007 Feb; 23(4):2133-7. PubMed ID: 17279705
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stabilization of Prussian blue with polyaniline and carbon nanotubes in neutral media for in vivo determination of glucose in rat brains.
    Li R; Guo D; Ye J; Zhang M
    Analyst; 2015 Jun; 140(11):3746-52. PubMed ID: 25631755
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity.
    Salimi A; Hallaj R; Soltanian S
    Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Haemoglobin immobilized on nafion modified multi-walled carbon nanotubes for O2, H2O2 and CCl3COOH sensors.
    Shie JW; Yogeswaran U; Chen SM
    Talanta; 2009 May; 78(3):896-902. PubMed ID: 19269447
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrochemical sensor for detection of hydrogen peroxide modified with prussian blue electrodeposition on nitrogen, phosphorus and sulfur co-doped porous carbons-chitosan.
    Zhai X; Li Y; Li J; Yue C; Lei X
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1242-1246. PubMed ID: 28532002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amperometric sensor for hydrogen peroxide based on direct electron transfer of spinach ferredoxin on Au electrode.
    Yagati AK; Lee T; Min J; Choi JW
    Bioelectrochemistry; 2011 Feb; 80(2):169-74. PubMed ID: 20851693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.