BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 22193059)

  • 1. Inhibition of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation by pyrroloquinoline quinine (PQQ).
    Odkhuu E; Koide N; Haque A; Tsolmongyn B; Naiki Y; Hashimoto S; Komatsu T; Yoshida T; Yokochi T
    Immunol Lett; 2012 Feb; 142(1-2):34-40. PubMed ID: 22193059
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Rattajak P; Aroonkesorn A; Smythe C; Wititsuwannakul R; Pitakpornpreecha T
    Molecules; 2024 May; 29(9):. PubMed ID: 38731604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of bone resorption by Mori Radicis Cortex through NFATc1 and c-Fos signaling-mediated inhibition of osteoclast differentiation.
    Hong S; Cho HR; Kim JH; Kim M; Lee S; Yang K; Lee Y; Sohn Y; Jung HS
    J Chin Med Assoc; 2024 Jun; 87(6):615-626. PubMed ID: 38651853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactomics profiling of the negative regulatory function of carbon monoxide on RANKL-treated RAW 264.7 cells during osteoclastogenesis.
    Tseng FJ; Chia WT; Shyu JF; Gou GH; Sytwu HK; Hsia CW; Tseng MJ; Pan RY
    BMC Syst Biol; 2014 May; 8():57. PubMed ID: 24886323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potato protein hydrolysate inhibits RANKL-induced osteoclast development by inhibiting osteoclastogenic genes via the NF-κB/MAPKs signaling pathways.
    Chen YJ; He YH; Lo YH; Yang HS; Abomughaid MM; Kumar KJS; Lin WT
    Environ Toxicol; 2024 Jul; 39(7):3991-4003. PubMed ID: 38606910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ctdnep1 phosphatase is required for negative regulation of RANKL-induced osteoclast differentiation in RAW264.7 cells.
    Konno T; Murachi H; Otsuka K; Kimura Y; Sampei C; Arasaki Y; Kohara Y; Hayata T
    Biochem Biophys Res Commun; 2024 Jul; 719():150063. PubMed ID: 38749090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroacupuncture stimulating Zusanli (ST36), Sanyinjiao (SP6) in mice with collagen-induced arthritis leads to adenosine A2A receptor-mediated alteration of p38α mitogen-activated protein kinase signaling and inhibition of osteoclastogenesis.
    Zhongheng DU; Wenjie C; Kejing T; Qiqi Z; Zhiwei S; Yong C; Su Y; Chunwu Z; Tianshen YE
    J Tradit Chin Med; 2023 Oct; 43(6):1103-1109. PubMed ID: 37946472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rab44, a novel large Rab GTPase, negatively regulates osteoclast differentiation by modulating intracellular calcium levels followed by NFATc1 activation.
    Yamaguchi Y; Sakai E; Okamoto K; Kajiya H; Okabe K; Naito M; Kadowaki T; Tsukuba T
    Cell Mol Life Sci; 2018 Jan; 75(1):33-48. PubMed ID: 28791425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nodal negatively regulates osteoclast differentiation by inducing STAT1 phosphorylation.
    Kim JH; Kim K; Kim I; Seong S; Koh JT; Kim N
    J Cell Physiol; 2024 Jun; 239(6):e31268. PubMed ID: 38577903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactobacillus rhamnosus inhibits osteoclast differentiation by suppressing the TLR2/NF-κB pathway.
    Fu J; Jia L; Wu L; Jiang Y; Zhao R; Du J; Guo L; Zhang C; Xu J; Liu Y
    Oral Dis; 2024 May; 30(4):2373-2386. PubMed ID: 37602540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenoprotein W engages in overactive osteoclast differentiation in multiple myeloma.
    Kim H; Oh J; Kim MK; Lee KH; Jeong D
    Mol Biol Rep; 2024 Apr; 51(1):587. PubMed ID: 38683225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of osteoclast differentiation and function in skeletal homeostasis.
    Ikeda K; Takeshita S
    J Biochem; 2016 Jan; 159(1):1-8. PubMed ID: 26538571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. E proteins regulate osteoclast maturation and survival.
    Long CL; Berry WL; Zhao Y; Sun XH; Humphrey MB
    J Bone Miner Res; 2012 Dec; 27(12):2476-89. PubMed ID: 22807064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of osteoclastogenesis with macrophage M1- and M2-inducing stimuli.
    Jeganathan S; Fiorino C; Naik U; Sun HS; Harrison RE
    PLoS One; 2014; 9(8):e104498. PubMed ID: 25101660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-Small Lysozyme-Protected Gold Nanoclusters as Nanomedicines Inducing Osteogenic Differentiation.
    Li K; Zhuang P; Tao B; Li D; Xing X; Mei X
    Int J Nanomedicine; 2020; 15():4705-4716. PubMed ID: 32636626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipase Cgamma2 mediates RANKL-stimulated lymph node organogenesis and osteoclastogenesis.
    Chen Y; Wang X; Di L; Fu G; Chen Y; Bai L; Liu J; Feng X; McDonald JM; Michalek S; He Y; Yu M; Fu YX; Wen R; Wu H; Wang D
    J Biol Chem; 2008 Oct; 283(43):29593-601. PubMed ID: 18728019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and functional characterization of bovine receptor activator of NF-κB ligand (RANKL).
    Chapuis AF; Alfituri OA; Hope JC; Stevens J; Moore J; Mclean K; Androscuk D; Dry I
    Vet Immunol Immunopathol; 2024 Feb; 268():110705. PubMed ID: 38157760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of triggering, amplifying and targeting RANK signaling in osteoclasts.
    Kuroda Y; Matsuo K
    World J Orthop; 2012 Nov; 3(11):167-74. PubMed ID: 23330071
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Cao F; Zhou W; Liu G; Xia T; Liu M; Mi B; Liu Y
    Am J Transl Res; 2017; 9(11):5022-5030. PubMed ID: 29218100
    [No Abstract]   [Full Text] [Related]  

  • 20. Curcuminoid (CRE-Ter)/Liposome as delivery platform for anti-osteoclastogenesis via NF-κB/ERK pathways in RANKL-induced RAW 264.7 cells through PLA foams.
    Pengjam Y; Panichayupakaranant P; Tanrattanakul V
    Heliyon; 2021 Sep; 7(9):e07823. PubMed ID: 34611555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.