These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22193208)

  • 1. A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size.
    Lou S; Ye JY; Li KQ; Wu A
    Analyst; 2012 Mar; 137(5):1174-81. PubMed ID: 22193208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pH on the single-step synthesis of gold nanoparticles using PEO-PPO-PEO triblock copolymers in aqueous media.
    Shou Q; Guo C; Yang L; Jia L; Liu C; Liu H
    J Colloid Interface Sci; 2011 Nov; 363(2):481-9. PubMed ID: 21855892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous immunoassay based on aggregation of antibody-functionalized gold nanoparticles coupled with light scattering detection.
    Du B; Li Z; Cheng Y
    Talanta; 2008 May; 75(4):959-64. PubMed ID: 18585169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions.
    Ojea-Jiménez I; Puntes V
    J Am Chem Soc; 2009 Sep; 131(37):13320-7. PubMed ID: 19711893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal enhancement of surface plasmon resonance based on gold nanoparticle-antibody complex for immunoassay.
    Lee W; Oh BK; Kim YW; Choi JW
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3521-5. PubMed ID: 17252803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Immunonanogold catalytic spectrophotometric determination of trace IgG].
    Deng JY; Zhang SS; Jiang ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2935-8. PubMed ID: 19248517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A competitive immunochromatographic strip assay for 17-α-hydroxy progesterone using colloidal gold nanoparticles.
    Tripathi V; Nara S; Singh K; Singh H; Shrivastav TG
    Clin Chim Acta; 2012 Jan; 413(1-2):262-8. PubMed ID: 22040782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct analysis of trichloropyridinol in human saliva using an Au nanoparticles-based immunochromatographic test strip for biomonitoring of exposure to chlorpyrifos.
    Zhang W; Tang Y; Du D; Smith J; Timchalk C; Liu D; Lin Y
    Talanta; 2013 Sep; 114():261-7. PubMed ID: 23953469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles.
    Perumal S; Hofmann A; Scholz N; Rühl E; Graf C
    Langmuir; 2011 Apr; 27(8):4456-64. PubMed ID: 21413796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticle antibody conjugates for use in competitive lateral flow assays.
    Bailes J; Mayoss S; Teale P; Soloviev M
    Methods Mol Biol; 2012; 906():45-55. PubMed ID: 22791423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes.
    Kwon MJ; Lee J; Wark AW; Lee HJ
    Anal Chem; 2012 Feb; 84(3):1702-7. PubMed ID: 22224823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of gold nanoparticles produced by laser ablation for immunochromatographic assay labeling.
    Urusov AE; Petrakova AV; Kuzmin PG; Zherdev AV; Sveshnikov PG; Shafeev GA; Dzantiev BB
    Anal Biochem; 2015 Dec; 491():65-71. PubMed ID: 26391846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive competitive flow injection chemiluminescence immunoassay for IgG using gold nanoparticle as label.
    Qi H; Shangguan L; Liang L; Ling C; Gao Q; Zhang C
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):498-503. PubMed ID: 21862396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of gold nanoparticles on the fluorescence excitation spectrum of α-fetoprotein: local environment dependent fluorescence quenching.
    Li JJ; Chen Y; Wang AQ; Zhu J; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):243-7. PubMed ID: 21084218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy.
    Nam J; Won N; Jin H; Chung H; Kim S
    J Am Chem Soc; 2009 Sep; 131(38):13639-45. PubMed ID: 19772360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled assembly of gold nanoparticles through antibody recognition: study and utilizing the effect of particle size on interparticle distance.
    Zhou G; Liu Y; Luo M; Li X; Xu Q; Ji X; He Z
    Langmuir; 2013 Apr; 29(15):4697-702. PubMed ID: 23521495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles.
    Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK
    Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.