BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22193421)

  • 1. Surface enhanced Raman spectroscopy for microfluidic pillar arrayed separation chips.
    Taylor LC; Kirchner TB; Lavrik NV; Sepaniak MJ
    Analyst; 2012 Feb; 137(4):1005-12. PubMed ID: 22193421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices.
    Connatser RM; Cochran M; Harrison RJ; Sepaniak MJ
    Electrophoresis; 2008 Apr; 29(7):1441-50. PubMed ID: 18386301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing.
    Parisi J; Su L; Lei Y
    Lab Chip; 2013 Apr; 13(8):1501-8. PubMed ID: 23459704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels.
    Xu BB; Ma ZC; Wang L; Zhang R; Niu LG; Yang Z; Zhang YL; Zheng WH; Zhao B; Xu Y; Chen QD; Xia H; Sun HB
    Lab Chip; 2011 Oct; 11(19):3347-51. PubMed ID: 21863148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic platforms based on surface-enhanced Raman scattering.
    Lim C; Hong J; Chung BG; deMello AJ; Choo J
    Analyst; 2010 May; 135(5):837-44. PubMed ID: 20419230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis.
    Quang LX; Lim C; Seong GH; Choo J; Do KJ; Yoo SK
    Lab Chip; 2008 Dec; 8(12):2214-9. PubMed ID: 19023489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis.
    Tong L; Righini M; Gonzalez MU; Quidant R; Käll M
    Lab Chip; 2009 Jan; 9(2):193-5. PubMed ID: 19107272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor.
    Lee S; Choi J; Chen L; Park B; Kyong JB; Seong GH; Choo J; Lee Y; Shin KH; Lee EK; Joo SW; Lee KH
    Anal Chim Acta; 2007 May; 590(2):139-44. PubMed ID: 17448337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a quantitative SERS approach--online monitoring of analytes in a microfluidic system with isotope-edited internal standards.
    März A; Ackermann KR; Malsch D; Bocklitz T; Henkel T; Popp J
    J Biophotonics; 2009 Apr; 2(4):232-42. PubMed ID: 19367591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics.
    Wilson R; Bowden SA; Parnell J; Cooper JM
    Anal Chem; 2010 Mar; 82(5):2119-23. PubMed ID: 20121214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives.
    Piorek BD; Lee SJ; Moskovits M; Meinhart CD
    Anal Chem; 2012 Nov; 84(22):9700-5. PubMed ID: 23067072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study.
    Park T; Lee S; Seong GH; Choo J; Lee EK; Kim YS; Ji WH; Hwang SY; Gweon DG; Lee S
    Lab Chip; 2005 Apr; 5(4):437-42. PubMed ID: 15791342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy--concepts and applications.
    März A; Henkel T; Cialla D; Schmitt M; Popp J
    Lab Chip; 2011 Nov; 11(21):3584-92. PubMed ID: 21964776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy.
    Lee D; Lee S; Seong GH; Choo J; Lee EK; Gweon DG; Lee S
    Appl Spectrosc; 2006 Apr; 60(4):373-7. PubMed ID: 16613632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates.
    Yu WW; White IM
    Analyst; 2013 Jul; 138(13):3679-86. PubMed ID: 23671906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS decoding of micro gold shells moving in microfluidic systems.
    Lee S; Joo S; Park S; Kim S; Kim HC; Chung TD
    Electrophoresis; 2010 May; 31(10):1623-9. PubMed ID: 20419705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual function surface-enhanced Raman active extractor for the detection of environmental contaminants.
    Bhandari D; Walworth MJ; Sepaniak MJ
    Appl Spectrosc; 2009 May; 63(5):571-8. PubMed ID: 19470216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips.
    Chen L; Choo J
    Electrophoresis; 2008 May; 29(9):1815-28. PubMed ID: 18384070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes.
    Krafft B; Panneerselvam R; Geissler D; Belder D
    Anal Bioanal Chem; 2020 Jan; 412(2):267-277. PubMed ID: 31797018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.