These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22193421)

  • 61. Part II: surface-enhanced Raman spectroscopy investigation of methionine containing heterodipeptides adsorbed on colloidal silver.
    Podstawka E; Ozaki Y; Proniewicz LM
    Appl Spectrosc; 2004 May; 58(5):581-90. PubMed ID: 15165335
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA.
    Schüler T; Kretschmer R; Jessing S; Urban M; Fritzsche W; Möller R; Popp J
    Biosens Bioelectron; 2009 Sep; 25(1):15-21. PubMed ID: 19592230
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Surface enhanced Raman scattering for narcotic detection and applications to chemical biology.
    Ryder AG
    Curr Opin Chem Biol; 2005 Oct; 9(5):489-93. PubMed ID: 16055368
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device.
    Becker M; Budich C; Deckert V; Janasek D
    Analyst; 2009 Jan; 134(1):38-40. PubMed ID: 19082172
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis.
    Feng S; Chen R; Lin J; Pan J; Chen G; Li Y; Cheng M; Huang Z; Chen J; Zeng H
    Biosens Bioelectron; 2010 Jul; 25(11):2414-9. PubMed ID: 20427174
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An integrated microfluidic platform for sensitive and rapid detection of biological toxins.
    Meagher RJ; Hatch AV; Renzi RF; Singh AK
    Lab Chip; 2008 Dec; 8(12):2046-53. PubMed ID: 19023467
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.
    Wallace RA; Charlton JJ; Kirchner TB; Lavrik NV; Datskos PG; Sepaniak MJ
    Anal Chem; 2014 Dec; 86(23):11819-25. PubMed ID: 25368983
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection.
    Connatser RM; Riddle LA; Sepaniak MJ
    J Sep Sci; 2004 Dec; 27(17-18):1545-50. PubMed ID: 15638165
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microfluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis.
    Mavrogiannis N; Desmond M; Ling K; Fu X; Gagnon Z
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404385
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A magneto-fluidic nanoparticle trapping platform for surface-enhanced Raman spectroscopy.
    Huang PJ; Marks HL; Coté GL; Kameoka J
    Biomicrofluidics; 2017 May; 11(3):034116. PubMed ID: 28652886
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips.
    Pilát Z; Kizovský M; Ježek J; Krátký S; Sobota J; Šiler M; Samek O; Buryška T; Vaňáček P; Damborský J; Prokop Z; Zemánek P
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249041
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Surface enhanced Raman scattering imaging of developed thin-layer chromatography plates.
    Freye CE; Crane NA; Kirchner TB; Sepaniak MJ
    Anal Chem; 2013 Apr; 85(8):3991-8. PubMed ID: 23521758
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Miniaturized array gas membrane separation strategy for rapid analysis of complex samples by surface-enhanced Raman scattering.
    Chen Z; Li G; Zhang Z
    Anal Chim Acta; 2019 Aug; 1065():29-39. PubMed ID: 31005148
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A self-driven microfluidic surface-enhanced Raman scattering device for Hg
    Li X; Yuan G; Yu W; Xing J; Zou Y; Zhao C; Kong W; Yu Z; Guo C
    Lab Chip; 2020 Jan; 20(2):414-423. PubMed ID: 31867593
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Recent progress of microfluidic chips in immunoassay.
    Wu K; He X; Wang J; Pan T; He R; Kong F; Cao Z; Ju F; Huang Z; Nie L
    Front Bioeng Biotechnol; 2022; 10():1112327. PubMed ID: 36619380
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Diffusion driven optofluidic dye lasers encapsulated into polymer chips.
    Wienhold T; Breithaupt F; Vannahme C; Christiansen MB; Dörfler W; Kristensen A; Mappes T
    Lab Chip; 2012 Oct; 12(19):3734-9. PubMed ID: 22820609
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Tunable Freeform-Segmented Reflector in a Microfluidic System for Conventional and Surface-Enhanced Raman Spectroscopy.
    Liu Q; Stenbæk Schmidt M; Thienpont H; Ottevaere H
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32106463
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy.
    Wang F; Wang HL; Qiu Y; Chang YL; Long YT
    Sci Rep; 2015 Dec; 5():18698. PubMed ID: 26687436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.