These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22193720)

  • 1. Mechanism of nucleotide sensing in group II chaperonins.
    Pereira JH; Ralston CY; Douglas NR; Kumar R; Lopez T; McAndrew RP; Knee KM; King JA; Frydman J; Adams PD
    EMBO J; 2012 Feb; 31(3):731-40. PubMed ID: 22193720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CryoEM reveals the stochastic nature of individual ATP binding events in a group II chaperonin.
    Zhao Y; Schmid MF; Frydman J; Chiu W
    Nat Commun; 2021 Aug; 12(1):4754. PubMed ID: 34362932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure.
    Zhang J; Ma B; DiMaio F; Douglas NR; Joachimiak LA; Baker D; Frydman J; Levitt M; Chiu W
    Structure; 2011 May; 19(5):633-9. PubMed ID: 21565698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle.
    Pereira JH; Ralston CY; Douglas NR; Meyer D; Knee KM; Goulet DR; King JA; Frydman J; Adams PD
    J Biol Chem; 2010 Sep; 285(36):27958-66. PubMed ID: 20573955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber.
    Douglas NR; Reissmann S; Zhang J; Chen B; Jakana J; Kumar R; Chiu W; Frydman J
    Cell; 2011 Jan; 144(2):240-52. PubMed ID: 21241893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of folding chamber closure in a group II chaperonin.
    Zhang J; Baker ML; Schröder GF; Douglas NR; Reissmann S; Jakana J; Dougherty M; Fu CJ; Levitt M; Ludtke SJ; Frydman J; Chiu W
    Nature; 2010 Jan; 463(7279):379-83. PubMed ID: 20090755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-ring communication is dispensable in the reaction cycle of group II chaperonins.
    Yamamoto YY; Abe Y; Moriya K; Arita M; Noguchi K; Ishii N; Sekiguchi H; Sasaki YC; Yohda M
    J Mol Biol; 2014 Jul; 426(14):2667-78. PubMed ID: 24859336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP dependent rotational motion of group II chaperonin observed by X-ray single molecule tracking.
    Sekiguchi H; Nakagawa A; Moriya K; Makabe K; Ichiyanagi K; Nozawa S; Sato T; Adachi S; Kuwajima K; Yohda M; Sasaki YC
    PLoS One; 2013; 8(5):e64176. PubMed ID: 23734192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding.
    Jackson GS; Staniforth RA; Halsall DJ; Atkinson T; Holbrook JJ; Clarke AR; Burston SG
    Biochemistry; 1993 Mar; 32(10):2554-63. PubMed ID: 8095403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissection of the ATP-dependent conformational change cycle of a group II chaperonin.
    Nakagawa A; Moriya K; Arita M; Yamamoto Y; Kitamura K; Ishiguro N; Kanzaki T; Oka T; Makabe K; Kuwajima K; Yohda M
    J Mol Biol; 2014 Jan; 426(2):447-59. PubMed ID: 24120682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis.
    Kusmierczyk AR; Martin J
    Biochem J; 2003 May; 371(Pt 3):669-73. PubMed ID: 12628000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential action of ATP-dependent subunit conformational change and interaction between helical protrusions in the closure of the built-in lid of group II chaperonins.
    Kanzaki T; Iizuka R; Takahashi K; Maki K; Masuda R; Sahlan M; Yébenes H; Valpuesta JM; Oka T; Furutani M; Ishii N; Kuwajima K; Yohda M
    J Biol Chem; 2008 Dec; 283(50):34773-84. PubMed ID: 18854314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATPase cycle controls the conformation of an archaeal chaperonin as visualized by cryo-electron microscopy.
    Gutsche I; Mihalache O; Hegerl R; Typke D; Baumeister W
    FEBS Lett; 2000 Jul; 477(3):278-82. PubMed ID: 10908735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer.
    Pilak O; Harrop SJ; Siddiqui KS; Chong K; De Francisci D; Burg D; Williams TJ; Cavicchioli R; Curmi PM
    Environ Microbiol; 2011 Aug; 13(8):2232-49. PubMed ID: 21477108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Mechanism and Function of Group II Chaperonins.
    Lopez T; Dalton K; Frydman J
    J Mol Biol; 2015 Sep; 427(18):2919-30. PubMed ID: 25936650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Mappings of the CCT/TRiC Complex-Mediated Protein Folding Cycle Using Diffracted X-ray Tracking.
    Araki K; Watanabe-Nakayama T; Sasaki D; Sasaki YC; Mio K
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural investigation of a chaperonin in action reveals how nucleotide binding regulates the functional cycle.
    Mas G; Guan JY; Crublet E; Debled EC; Moriscot C; Gans P; Schoehn G; Macek P; Schanda P; Boisbouvier J
    Sci Adv; 2018 Sep; 4(9):eaau4196. PubMed ID: 30255156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms.
    Shomura Y; Yoshida T; Iizuka R; Maruyama T; Yohda M; Miki K
    J Mol Biol; 2004 Jan; 335(5):1265-78. PubMed ID: 14729342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational rearrangements of an archaeal chaperonin upon ATPase cycling.
    Gutsche I; Holzinger J; Rössle M; Heumann H; Baumeister W; May RP
    Curr Biol; 2000 Apr; 10(7):405-8. PubMed ID: 10753750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gly-345 plays an essential role in Pyrococcus furiosus chaperonin function.
    Yang LD; Chu ZM; Zhang Y; Yang SL
    Biotechnol Lett; 2011 Aug; 33(8):1649-55. PubMed ID: 21476092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.