These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22194721)

  • 1. An investigation on the role of spike latency in an artificial olfactory system.
    Martinelli E; Polese D; Dini F; Paolesse R; Filippini D; Lundström I; Di Natale C
    Front Neuroeng; 2011; 4():16. PubMed ID: 22194721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of odor stimulation on antidromic spikes in olfactory sensory neurons.
    Scott JW; Sherrill L
    J Neurophysiol; 2008 Dec; 100(6):3074-85. PubMed ID: 18842957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using artificial neural networks to classify unknown volatile chemicals from the firings of insect olfactory sensory neurons.
    Bachtiar LR; Unsworth CP; Newcomb RD; Crampin EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2752-5. PubMed ID: 22254911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike-field Granger causality for hybrid neural data analysis.
    Gong X; Li W; Liang H
    J Neurophysiol; 2019 Aug; 122(2):809-822. PubMed ID: 31242046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks.
    Xu Y; Zeng X; Han L; Yang J
    Neural Netw; 2013 Jul; 43():99-113. PubMed ID: 23500504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting.
    Ponulak F; Kasiński A
    Neural Comput; 2010 Feb; 22(2):467-510. PubMed ID: 19842989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An olfactory neuronal network for vapor recognition in an artificial nose.
    White J; Dickinson TA; Walt DR; Kauer JS
    Biol Cybern; 1998 Apr; 78(4):245-51. PubMed ID: 9652076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spike-timing-based integrated model for pattern recognition.
    Hu J; Tang H; Tan KC; Li H; Shi L
    Neural Comput; 2013 Feb; 25(2):450-72. PubMed ID: 23148414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of artificial neural networks on mosquito Olfactory Receptor Neurons for an olfactory biosensor.
    Bachtiar LR; Unsworth CP; Newcomb RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5390-3. PubMed ID: 24110954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological characterization of layer III non-pyramidal neurons in piriform (olfactory) cortex of rat.
    Protopapas AD; Bower JM
    Brain Res; 2000 May; 865(1):1-11. PubMed ID: 10814727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antidromic activation of spikes with bimodal and trimodal latencies in the olfactory bulb of rabbits.
    Westecker ME; Manns D
    Brain Res; 1983 Dec; 288(1-2):119-30. PubMed ID: 6198022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Neuro-Inspired System for Online Learning and Recognition of Parallel Spike Trains, Based on Spike Latency, and Heterosynaptic STDP.
    Susi G; Antón Toro L; Canuet L; López ME; Maestú F; Mirasso CR; Pereda E
    Front Neurosci; 2018; 12():780. PubMed ID: 30429767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse Computation in Adaptive Spiking Neural Networks.
    Zambrano D; Nusselder R; Scholte HS; Bohté SM
    Front Neurosci; 2018; 12():987. PubMed ID: 30670943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the Information Extracted by a Single Spiking Neuron from a Continuous Input Time Series.
    Zeldenrust F; de Knecht S; Wadman WJ; Denève S; Gutkin B
    Front Comput Neurosci; 2017; 11():49. PubMed ID: 28663729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solving Constraint Satisfaction Problems with Networks of Spiking Neurons.
    Jonke Z; Habenschuss S; Maass W
    Front Neurosci; 2016; 10():118. PubMed ID: 27065785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-latency single channel real-time neural spike sorting system based on template matching.
    Wang PK; Pun SH; Chen CH; McCullagh EA; Klug A; Li A; Vai MI; Mak PU; Lei TC
    PLoS One; 2019; 14(11):e0225138. PubMed ID: 31756211
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.