These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22194866)

  • 1. Effect of Ca2+ channel block on glycerol metabolism in Dunaliella salina under hypoosmotic and hyperosmotic stresses.
    Chen H; Chen SL; Jiang JG
    PLoS One; 2011; 6(12):e28613. PubMed ID: 22194866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis on the key enzymes of the glycerol cycle metabolic pathway in Dunaliella salina under osmotic stresses.
    Chen H; Lu Y; Jiang JG
    PLoS One; 2012; 7(6):e37578. PubMed ID: 22675484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of salinities on the gene expression of a (NAD+)-dependent glycerol-3-phosphate dehydrogenase in Dunaliella salina.
    Chen H; Lao YM; Jiang JG
    Sci Total Environ; 2011 Mar; 409(7):1291-7. PubMed ID: 21272918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase.
    Chen H; Jiang JG; Wu GH
    J Agric Food Chem; 2009 Jul; 57(14):6178-82. PubMed ID: 19548674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ signal transduction related to neutral lipid synthesis in an oil-producing green alga Chlorella sp. C2.
    Chen H; Zhang Y; He C; Wang Q
    Plant Cell Physiol; 2014 Mar; 55(3):634-44. PubMed ID: 24449653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular clone and expression of a NAD+-dependent glycerol-3-phosphate dehydrogenase isozyme gene from the halotolerant alga Dunaliella salina.
    Cai M; He LH; Yu TY
    PLoS One; 2013; 8(4):e62287. PubMed ID: 23626797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic profiles of Dunaliella salina in response to hypersaline stress.
    He Q; Lin Y; Tan H; Zhou Y; Wen Y; Gan J; Li R; Zhang Q
    BMC Genomics; 2020 Feb; 21(1):115. PubMed ID: 32013861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence of glycerol uptake in Dunaliella tertiolecta under hyperosmotic stress.
    Lin H; Fang L; Low CS; Chow Y; Lee YK
    FEBS J; 2013 Feb; 280(4):1064-72. PubMed ID: 23279806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters.
    Stephan AB; Kunz HH; Yang E; Schroeder JI
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):E5242-9. PubMed ID: 27528686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock.
    Einspahr KJ; Peeler TC; Thompson GA
    J Biol Chem; 1988 Apr; 263(12):5775-9. PubMed ID: 2833516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of glycerol synthesis in response to osmotic changes in dunaliella.
    Chitlaru E; Pick U
    Plant Physiol; 1991 May; 96(1):50-60. PubMed ID: 16668185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of a plastidic glycerol 3-phosphate dehydrogenase cDNA from Dunaliella salina.
    He Q; Qiao D; Bai L; Zhang Q; Yang W; Li Q; Cao Y
    J Plant Physiol; 2007 Feb; 164(2):214-20. PubMed ID: 16769151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dunaliella salina Hsp90 is halotolerant.
    Chen XJ; Wu MJ; Jiang Y; Yang Y; Yan YB
    Int J Biol Macromol; 2015 Apr; 75():418-25. PubMed ID: 25680963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient decrease of light-harvesting complex II phosphorylation level by hypoosmotic shock in dark-adapted Dunaliella salina.
    Liu XD; Hu FH; Shen YG
    Acta Biochim Biophys Sin (Shanghai); 2006 Feb; 38(2):104-9. PubMed ID: 16474901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of increasing copper and salinity on glycerol production by Dunaliella salina.
    Lustigman B; McCormick JM; Dale G; McLaughlin JJ
    Bull Environ Contam Toxicol; 1987 Feb; 38(2):359-62. PubMed ID: 3801710
    [No Abstract]   [Full Text] [Related]  

  • 16. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation.
    Liu W; Ming Y; Li P; Huang Z
    Plant Physiol Biochem; 2012 May; 54():43-8. PubMed ID: 22377429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DHPR activation underlies SR Ca2+ release induced by osmotic stress in isolated rat skeletal muscle fibers.
    Pickering JD; White E; Duke AM; Steele DS
    J Gen Physiol; 2009 May; 133(5):511-24. PubMed ID: 19398777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caffeine activates a mechanosensitive Ca(2+) channel in human red cells.
    Cordero JF; Romero PJ
    Cell Calcium; 2002 May; 31(5):189-200. PubMed ID: 12098221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of blood pressure by store-operated calcium channel blockers.
    Xu YJ; Elimban V; Dhalla NS
    J Cell Mol Med; 2015 Dec; 19(12):2763-70. PubMed ID: 26471725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminum as a specific inhibitor of plant TPC1 Ca2+ channels.
    Kawano T; Kadono T; Fumoto K; Lapeyrie F; Kuse M; Isobe M; Furuichi T; Muto S
    Biochem Biophys Res Commun; 2004 Nov; 324(1):40-5. PubMed ID: 15464979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.