BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22195134)

  • 1. Determining the reasons for medication prescriptions in the EHR using knowledge and natural language processing.
    Li Y; Salmasian H; Harpaz R; Chase H; Friedman C
    AMIA Annu Symp Proc; 2011; 2011():768-76. PubMed ID: 22195134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated problem list generation and physicians perspective from a pilot study.
    Devarakonda MV; Mehta N; Tsou CH; Liang JJ; Nowacki AS; Jelovsek JE
    Int J Med Inform; 2017 Sep; 105():121-129. PubMed ID: 28750905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Computerized clinical decision support for medication in the electronic health record].
    Bastardot F; Galland-Decker C; Wasserfallen JB; Pignolet O; Rochat M
    Rev Med Suisse; 2020 Nov; 16(716):2242-2247. PubMed ID: 33237640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An updated, computable MEDication-Indication resource for biomedical research.
    Zheng NS; Kerchberger VE; Borza VA; Eken HN; Smith JC; Wei WQ
    Sci Rep; 2021 Sep; 11(1):18953. PubMed ID: 34556781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring prescribing patterns using regression and electronic health records.
    Backenroth D; Chase HS; Wei Y; Friedman C
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):175. PubMed ID: 29258594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How often do prescribers include indications in drug orders? Analysis of 4 million outpatient prescriptions.
    Salazar A; Karmiy SJ; Forsythe KJ; Amato MG; Wright A; Lai KH; Lambert BL; Liebovitz DM; Eguale T; Volk LA; Schiff GD
    Am J Health Syst Pharm; 2019 Jun; 76(13):970-979. PubMed ID: 31361884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Natural Language Processing System That Links Medical Terms in Electronic Health Record Notes to Lay Definitions: System Development Using Physician Reviews.
    Chen J; Druhl E; Polepalli Ramesh B; Houston TK; Brandt CA; Zulman DM; Vimalananda VG; Malkani S; Yu H
    J Med Internet Res; 2018 Jan; 20(1):e26. PubMed ID: 29358159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reimagining Clinical Documentation With Artificial Intelligence.
    Lin SY; Shanafelt TD; Asch SM
    Mayo Clin Proc; 2018 May; 93(5):563-565. PubMed ID: 29631808
    [No Abstract]   [Full Text] [Related]  

  • 9. Longer-Term Durability of Using Default Options in the Electronic Health Record to Increase Generic Prescribing Rates.
    Olshan D; Rareshide CAL; Patel MS
    J Gen Intern Med; 2019 Mar; 34(3):349-350. PubMed ID: 30377930
    [No Abstract]   [Full Text] [Related]  

  • 10. MedEx: a medication information extraction system for clinical narratives.
    Xu H; Stenner SP; Doan S; Johnson KB; Waitman LR; Denny JC
    J Am Med Inform Assoc; 2010; 17(1):19-24. PubMed ID: 20064797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automated tool for detecting medication overuse based on the electronic health records.
    Salmasian H; Freedberg DE; Abrams JA; Friedman C
    Pharmacoepidemiol Drug Saf; 2013 Feb; 22(2):183-9. PubMed ID: 23233423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Link between prescriptions and the electronic health record.
    Nelson SD; Woodroof T; Liu W; Lehmann CU
    Am J Health Syst Pharm; 2018 Jun; 75(11 Supplement 2):S29-S34. PubMed ID: 29802176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining the electronic health record for disease knowledge.
    Chen ES; Sarkar IN
    Methods Mol Biol; 2014; 1159():269-86. PubMed ID: 24788272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real world evidence in cardiovascular medicine: ensuring data validity in electronic health record-based studies.
    Hernandez-Boussard T; Monda KL; Crespo BC; Riskin D
    J Am Med Inform Assoc; 2019 Nov; 26(11):1189-1194. PubMed ID: 31414700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting Biomedical Factual Knowledge Using Pretrained Language Model and Electronic Health Record Context.
    Yao Z; Cao Y; Yang Z; Deshpande V; Yu H
    AMIA Annu Symp Proc; 2022; 2022():1188-1197. PubMed ID: 37128373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementing Electronic Health Record Default Settings to Reduce Opioid Overprescribing: A Pilot Study.
    Zivin K; White JO; Chao S; Christensen AL; Horner L; Petersen DM; Hobbs MR; Capreol G; Halbritter KA; Jones CM
    Pain Med; 2019 Jan; 20(1):103-112. PubMed ID: 29325160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formal representation of patients' care context data: the path to improving the electronic health record.
    Colicchio TK; Dissanayake PI; Cimino JJ
    J Am Med Inform Assoc; 2020 Nov; 27(11):1648-1657. PubMed ID: 32935127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of Artificial Intelligence to Electronic Health Record Data in Ophthalmology.
    Lin WC; Chen JS; Chiang MF; Hribar MR
    Transl Vis Sci Technol; 2020 Feb; 9(2):13. PubMed ID: 32704419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic health record innovations: Helping physicians - One less click at a time.
    Guo U; Chen L; Mehta PH
    Health Inf Manag; 2017 Sep; 46(3):140-144. PubMed ID: 28671038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When order sets do not align with clinician workflow: assessing practice patterns in the electronic health record.
    Li RC; Wang JK; Sharp C; Chen JH
    BMJ Qual Saf; 2019 Dec; 28(12):987-996. PubMed ID: 31164486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.