BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22195210)

  • 1. A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations.
    Wang W; Haerian K; Salmasian H; Harpaz R; Chase H; Friedman C
    AMIA Annu Symp Proc; 2011; 2011():1464-70. PubMed ID: 22195210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facilitating adverse drug event detection in pharmacovigilance databases using molecular structure similarity: application to rhabdomyolysis.
    Vilar S; Harpaz R; Chase HS; Costanzi S; Rabadan R; Friedman C
    J Am Med Inform Assoc; 2011 Dec; 18 Suppl 1(Suppl 1):i73-80. PubMed ID: 21946238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data mining methodology for response to hypertension symptomology-application to COVID-19-related pharmacovigilance.
    Xu X; Kawakami J; Millagaha Gedara NI; Riviere JE; Meyer E; Wyckoff GJ; Jaberi-Douraki M
    Elife; 2021 Nov; 10():. PubMed ID: 34812146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining multi-item drug adverse effect associations in spontaneous reporting systems.
    Harpaz R; Chase HS; Friedman C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 9(Suppl 9):S7. PubMed ID: 21044365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting data.
    Ibrahim H; Saad A; Abdo A; Sharaf Eldin A
    J Biomed Inform; 2016 Apr; 60():294-308. PubMed ID: 26903152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Signal Detection for Adverse Drug Events using MapReduce Paradigm.
    Fan K; Sun X; Tao Y; Xu L; Wang C; Mao X; Peng B; Pan Y
    AMIA Annu Symp Proc; 2010 Nov; 2010():902-6. PubMed ID: 21347109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.
    Eshleman R; Singh R
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):335. PubMed ID: 27766937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adverse Drug Event Monitoring with Clinical and Laboratory Data Using Arden Syntax.
    Rappelsberger A; Adlassnig KP; de Bruin JS; Plössnig M; Schuler J; Hofer-Dückelmann C
    Stud Health Technol Inform; 2017; 245():1123-1127. PubMed ID: 29295277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing scientific literature reports for pharmacovigilance. Prototype software analytical tool development and usability testing.
    Sorbello A; Ripple A; Tonning J; Munoz M; Hasan R; Ly T; Francis H; Bodenreider O
    Appl Clin Inform; 2017 Mar; 8(1):291-305. PubMed ID: 28326432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter.
    Magge A; Tutubalina E; Miftahutdinov Z; Alimova I; Dirkson A; Verberne S; Weissenbacher D; Gonzalez-Hernandez G
    J Am Med Inform Assoc; 2021 Sep; 28(10):2184-2192. PubMed ID: 34270701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adverse drug effect mentions extraction method based on weighted online recurrent extreme learning machine.
    El-Allaly ED; Sarrouti M; En-Nahnahi N; Ouatik El Alaoui S
    Comput Methods Programs Biomed; 2019 Jul; 176():33-41. PubMed ID: 31200909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D pharmacophoric similarity improves multi adverse drug event identification in pharmacovigilance.
    Vilar S; Tatonetti NP; Hripcsak G
    Sci Rep; 2015 Mar; 5():8809. PubMed ID: 25744369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SSEL-ADE: A semi-supervised ensemble learning framework for extracting adverse drug events from social media.
    Liu J; Zhao S; Wang G
    Artif Intell Med; 2018 Jan; 84():34-49. PubMed ID: 29111222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging MEDLINE indexing for pharmacovigilance - Inherent limitations and mitigation strategies.
    Winnenburg R; Sorbello A; Ripple A; Harpaz R; Tonning J; Szarfman A; Francis H; Bodenreider O
    J Biomed Inform; 2015 Oct; 57():425-35. PubMed ID: 26342964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel data-mining methodologies for adverse drug event discovery and analysis.
    Harpaz R; DuMouchel W; Shah NH; Madigan D; Ryan P; Friedman C
    Clin Pharmacol Ther; 2012 Jun; 91(6):1010-21. PubMed ID: 22549283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making Sense of Pharmacovigilance and Drug Adverse Event Reporting: Comparative Similarity Association Analysis Using AI Machine Learning Algorithms in Dogs and Cats.
    Xu X; Mazloom R; Goligerdian A; Staley J; Amini M; Wyckoff GJ; Riviere J; Jaberi-Douraki M
    Top Companion Anim Med; 2019 Dec; 37():100366. PubMed ID: 31837760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADE Eval: An Evaluation of Text Processing Systems for Adverse Event Extraction from Drug Labels for Pharmacovigilance.
    Bayer S; Clark C; Dang O; Aberdeen J; Brajovic S; Swank K; Hirschman L; Ball R
    Drug Saf; 2021 Jan; 44(1):83-94. PubMed ID: 33006728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pipeline to extract drug-adverse event pairs from multiple data sources.
    Yeleswarapu S; Rao A; Joseph T; Saipradeep VG; Srinivasan R
    BMC Med Inform Decis Mak; 2014 Feb; 14():13. PubMed ID: 24559132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic detection of adverse events to predict drug label changes using text and data mining techniques.
    Gurulingappa H; Toldo L; Rajput AM; Kors JA; Taweel A; Tayrouz Y
    Pharmacoepidemiol Drug Saf; 2013 Nov; 22(11):1189-94. PubMed ID: 23935003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for systematic discovery of adverse drug events from clinical notes.
    Wang G; Jung K; Winnenburg R; Shah NH
    J Am Med Inform Assoc; 2015 Nov; 22(6):1196-204. PubMed ID: 26232442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.