BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 22195222)

  • 21. Mining Electronic Health Records to Extract Patient-Centered Outcomes Following Prostate Cancer Treatment.
    Hernandez-Boussard T; Kourdis PD; Seto T; Ferrari M; Blayney DW; Rubin D; Brooks JD
    AMIA Annu Symp Proc; 2017; 2017():876-882. PubMed ID: 29854154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ontologies, Knowledge Representation, and Machine Learning for Translational Research: Recent Contributions.
    Robinson PN; Haendel MA
    Yearb Med Inform; 2020 Aug; 29(1):159-162. PubMed ID: 32823310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acronym Disambiguation in Spanish Electronic Health Narratives Using Machine Learning Techniques.
    Rubio-López I; Costumero R; Ambit H; Gonzalo-Martín C; Menasalvas E; Rodríguez González A
    Stud Health Technol Inform; 2017; 235():251-255. PubMed ID: 28423792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning.
    Osborne JD; Wyatt M; Westfall AO; Willig J; Bethard S; Gordon G
    J Am Med Inform Assoc; 2016 Nov; 23(6):1077-1084. PubMed ID: 27026618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A rule based solution to co-reference resolution in clinical text.
    Chen P; Hinote D; Chen G
    J Am Med Inform Assoc; 2013; 20(5):891-7. PubMed ID: 23059732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TagLine: Information Extraction for Semi-Structured Text in Medical Progress Notes.
    Finch DK; McCart JA; Luther SL
    AMIA Annu Symp Proc; 2014; 2014():534-43. PubMed ID: 25954358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review of approaches to identifying patient phenotype cohorts using electronic health records.
    Shivade C; Raghavan P; Fosler-Lussier E; Embi PJ; Elhadad N; Johnson SB; Lai AM
    J Am Med Inform Assoc; 2014; 21(2):221-30. PubMed ID: 24201027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying social determinants of health from clinical narratives: A study of performance, documentation ratio, and potential bias.
    Yu Z; Peng C; Yang X; Dang C; Adekkanattu P; Gopal Patra B; Peng Y; Pathak J; Wilson DL; Chang CY; Lo-Ciganic WH; George TJ; Hogan WR; Guo Y; Bian J; Wu Y
    J Biomed Inform; 2024 May; 153():104642. PubMed ID: 38621641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relational machine learning for electronic health record-driven phenotyping.
    Peissig PL; Santos Costa V; Caldwell MD; Rottscheit C; Berg RL; Mendonca EA; Page D
    J Biomed Inform; 2014 Dec; 52():260-70. PubMed ID: 25048351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ReCAP: Feasibility and Accuracy of Extracting Cancer Stage Information From Narrative Electronic Health Record Data.
    Warner JL; Levy MA; Neuss MN; Warner JL; Levy MA; Neuss MN
    J Oncol Pract; 2016 Feb; 12(2):157-8; e169-7. PubMed ID: 26306621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a natural language processing system to identify timing and status of colonoscopy testing in electronic medical records.
    Denny JC; Peterson JF; Choma NN; Xu H; Miller RA; Bastarache L; Peterson NB
    AMIA Annu Symp Proc; 2009 Nov; 2009():141. PubMed ID: 20351837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated detection of substance use information from electronic health records for a pediatric population.
    Ni Y; Bachtel A; Nause K; Beal S
    J Am Med Inform Assoc; 2021 Sep; 28(10):2116-2127. PubMed ID: 34333636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [A customized method for information extraction from unstructured text data in the electronic medical records].
    Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De-identifying free text of Japanese electronic health records.
    Kajiyama K; Horiguchi H; Okumura T; Morita M; Kano Y
    J Biomed Semantics; 2020 Sep; 11(1):11. PubMed ID: 32958039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010.
    de Bruijn B; Cherry C; Kiritchenko S; Martin J; Zhu X
    J Am Med Inform Assoc; 2011; 18(5):557-62. PubMed ID: 21565856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real world evidence in cardiovascular medicine: ensuring data validity in electronic health record-based studies.
    Hernandez-Boussard T; Monda KL; Crespo BC; Riskin D
    J Am Med Inform Assoc; 2019 Nov; 26(11):1189-1194. PubMed ID: 31414700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.