BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 22195558)

  • 1. Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library.
    Yamagishi Y; Shoji I; Miyagawa S; Kawakami T; Katoh T; Goto Y; Suga H
    Chem Biol; 2011 Dec; 18(12):1562-70. PubMed ID: 22195558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and screening of vast libraries of natural product-like macrocyclic peptides using in vitro display technologies.
    Bashiruddin NK; Suga H
    Curr Opin Chem Biol; 2015 Feb; 24():131-8. PubMed ID: 25483262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro selection of multiple libraries created by genetic code reprogramming to discover macrocyclic peptides that antagonize VEGFR2 activity in living cells.
    Kawakami T; Ishizawa T; Fujino T; Reid PC; Suga H; Murakami H
    ACS Chem Biol; 2013; 8(6):1205-14. PubMed ID: 23517428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal production and in vitro selection of natural product-like peptidomimetics: the FIT and RaPID systems.
    Hipolito CJ; Suga H
    Curr Opin Chem Biol; 2012 Apr; 16(1-2):196-203. PubMed ID: 22401851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System.
    Tsiamantas C; Otero-Ramirez ME; Suga H
    Methods Mol Biol; 2019; 2001():299-315. PubMed ID: 31134577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Display Selection of Exotic Macrocyclic Peptides Expressed under a Radically Reprogrammed 23 Amino Acid Genetic Code.
    Passioura T; Liu W; Dunkelmann D; Higuchi T; Suga H
    J Am Chem Soc; 2018 Sep; 140(37):11551-11555. PubMed ID: 30157372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Elaboration of Pseudo-natural Products Using Artificial In Vitro Biosynthesis Systems].
    Goto Y
    Yakugaku Zasshi; 2018; 138(1):55-61. PubMed ID: 29311466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro selection of anti-Akt2 thioether-macrocyclic peptides leading to isoform-selective inhibitors.
    Hayashi Y; Morimoto J; Suga H
    ACS Chem Biol; 2012 Mar; 7(3):607-13. PubMed ID: 22273180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of a large library of macrocyclic peptides containing multiple and diverse N-alkylated residues.
    Morimoto J; Kodadek T
    Mol Biosyst; 2015 Oct; 11(10):2770-9. PubMed ID: 26067000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets.
    Passioura T; Suga H
    Chem Commun (Camb); 2017 Feb; 53(12):1931-1940. PubMed ID: 28091672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal Synthesis of Macrocyclic Peptides in Vitro and in Vivo Mediated by Genetically Encoded Aminothiol Unnatural Amino Acids.
    Frost JR; Jacob NT; Papa LJ; Owens AE; Fasan R
    ACS Chem Biol; 2015 Aug; 10(8):1805-16. PubMed ID: 25933125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection-based discovery of druglike macrocyclic peptides.
    Passioura T; Katoh T; Goto Y; Suga H
    Annu Rev Biochem; 2014; 83():727-52. PubMed ID: 24580641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosomal synthesis of nonstandard peptides.
    Kang TJ; Suga H
    Biochem Cell Biol; 2008 Apr; 86(2):92-9. PubMed ID: 18443622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity Maturation of Macrocyclic Peptide Modulators of Lys48-Linked Diubiquitin by a Twofold Strategy.
    Huang Y; Nawatha M; Livneh I; Rogers JM; Sun H; Singh SK; Ciechanover A; Brik A; Suga H
    Chemistry; 2020 Jun; 26(36):8022-8027. PubMed ID: 32105365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expansion of protein interaction maps by phage peptide display using MDM2 as a prototypical conformationally flexible target protein.
    Burch L; Shimizu H; Smith A; Patterson C; Hupp TR
    J Mol Biol; 2004 Mar; 337(1):129-45. PubMed ID: 15001357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosomal synthesis of an amphotericin-B inspired macrocycle.
    Torikai K; Suga H
    J Am Chem Soc; 2014 Dec; 136(50):17359-61. PubMed ID: 25454254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosomal synthesis of backbone-macrocyclic peptides containing γ-amino acids.
    Ohshiro Y; Nakajima E; Goto Y; Fuse S; Takahashi T; Doi T; Suga H
    Chembiochem; 2011 May; 12(8):1183-7. PubMed ID: 21506233
    [No Abstract]   [Full Text] [Related]  

  • 18. Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products.
    van der Velden NS; Kälin N; Helf MJ; Piel J; Freeman MF; Künzler M
    Nat Chem Biol; 2017 Aug; 13(8):833-835. PubMed ID: 28581484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide Display Technologies.
    Pitt A; Nims Z
    Methods Mol Biol; 2019; 2001():285-298. PubMed ID: 31134576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosome-mediated synthesis of natural product-like peptides via cell-free translation.
    Maini R; Umemoto S; Suga H
    Curr Opin Chem Biol; 2016 Oct; 34():44-52. PubMed ID: 27344230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.