BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22195574)

  • 21. Identification of desiccation tolerance transcripts potentially involved in rape (Brassica napus L.) seeds development and germination.
    Lang S; Liu X; Ma G; Lan Q; Wang X
    Plant Physiol Biochem; 2014 Oct; 83():316-26. PubMed ID: 25221920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process.
    Huang H; Song S
    Plant Physiol Biochem; 2013 Jul; 68():61-70. PubMed ID: 23628926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osmopriming-induced salt tolerance during seed germination of alfalfa most likely mediates through H
    Amooaghaie R; Tabatabaie F
    Protoplasma; 2017 Jul; 254(4):1791-1803. PubMed ID: 28093607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A multiscale approach reveals regulatory players of water stress responses in seeds during germination.
    Saux M; Ponnaiah M; Langlade N; Zanchetta C; Balliau T; El-Maarouf-Bouteau H; Bailly C
    Plant Cell Environ; 2020 May; 43(5):1300-1313. PubMed ID: 31994739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress.
    Guan YJ; Hu J; Wang XJ; Shao CX
    J Zhejiang Univ Sci B; 2009 Jun; 10(6):427-33. PubMed ID: 19489108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomics of seed development, desiccation tolerance, germination and vigor.
    Wang WQ; Liu SJ; Song SQ; Møller IM
    Plant Physiol Biochem; 2015 Jan; 86():1-15. PubMed ID: 25461695
    [TBL] [Abstract][Full Text] [Related]  

  • 27. iTRAQ-based quantitative proteomic analysis reveals pathways associated with re-establishing desiccation tolerance in germinating seeds of Caragana korshinskii Kom.
    Peng L; Sun Q; Xue H; Wang X
    J Proteomics; 2018 May; 179():1-16. PubMed ID: 29471058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress.
    Masondo NA; Kulkarni MG; Finnie JF; Van Staden J
    Ecotoxicol Environ Saf; 2018 Jan; 147():43-48. PubMed ID: 28826029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars.
    Hussain S; Khan F; Hussain HA; Nie L
    Front Plant Sci; 2016; 7():116. PubMed ID: 26904078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches.
    Fait A; Angelovici R; Less H; Ohad I; Urbanczyk-Wochniak E; Fernie AR; Galili G
    Plant Physiol; 2006 Nov; 142(3):839-54. PubMed ID: 16963520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation.
    Bai X; Yang L; Tian M; Chen J; Shi J; Yang Y; Hu X
    PLoS One; 2011; 6(6):e20714. PubMed ID: 21674063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does retained-seed priming drive the evolution of serotiny in drylands? An assessment using the cactus Mammillaria hernandezii.
    Santini BA; Martorell C
    Am J Bot; 2013 Feb; 100(2):365-73. PubMed ID: 23345416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in proteasome levels in spinach (Spinacia oleracea) seeds during imbibition and germination.
    Miyawaki M; Aito M; Ito N; Yanagawa Y; Kendrick RE; Tanaka K; Sato T; Nakagawa H
    Biosci Biotechnol Biochem; 1997 Jun; 61(6):998-1001. PubMed ID: 9214761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dehydrin genes and their expression in recalcitrant oak (Quercus robur) embryos.
    Sunderlíková V; Salaj J; Kopecky D; Salaj T; Wilhem E; Matusíková I
    Plant Cell Rep; 2009 Jul; 28(7):1011-21. PubMed ID: 19466427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques.
    Tahaei A; Soleymani A; Shams M
    Appl Biochem Biotechnol; 2016 Sep; 180(1):26-40. PubMed ID: 27080166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diverse accumulation of several dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress.
    Rurek M
    BMC Plant Biol; 2010 Aug; 10():181. PubMed ID: 20718974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seed priming to alleviate salinity stress in germinating seeds.
    Ibrahim EA
    J Plant Physiol; 2016 Mar; 192():38-46. PubMed ID: 26812088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds.
    Maia J; Dekkers BJ; Dolle MJ; Ligterink W; Hilhorst HW
    New Phytol; 2014 Jul; 203(1):81-93. PubMed ID: 24697728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloning of dehydrin coding sequences from Brassica juncea and Brassica napus and their low temperature-inducible expression in germinating seeds.
    Yao K; Lockhart KM; Kalanack JJ
    Plant Physiol Biochem; 2005 Jan; 43(1):83-9. PubMed ID: 15763669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco.
    Kaye C; Neven L; Hofig A; Li QB; Haskell D; Guy C
    Plant Physiol; 1998 Apr; 116(4):1367-77. PubMed ID: 9536054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.