These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
51 related articles for article (PubMed ID: 22195665)
1. Ionic alkylleads in salt marsh periwinkles (Littorina irrorata). Krishnan K; Marshall WD; Hatch WI Environ Sci Technol; 1988 Jul; 22(7):806-11. PubMed ID: 22195665 [No Abstract] [Full Text] [Related]
2. Periwinkle climbing response to water- and airbone predator chemical cues may depend on home-marsh geography. Carroll JM; Church MB; Finelli CM PeerJ; 2018; 6():e5744. PubMed ID: 30294513 [TBL] [Abstract][Full Text] [Related]
3. Detection of secondary metabolites in marine macroalgae using the marsh periwinkle,Littorina irrorata say, as an indicator organism. Targett NM; McConnell OJ J Chem Ecol; 1982 Jan; 8(1):115-24. PubMed ID: 24414588 [TBL] [Abstract][Full Text] [Related]
4. Effects of environmental stress on the condition of Littorina littorea along the Scheldt estuary (The Netherlands). Van den Broeck H; De Wolf H; Backeljau T; Blust R Sci Total Environ; 2007 Apr; 376(1-3):346-58. PubMed ID: 17343899 [TBL] [Abstract][Full Text] [Related]
5. Total mercury and methylmercury in freshwater and salt marsh soils of the Mississippi river deltaic plain. Kongchum M; Devai I; DeLaune RD; Jugsujinda A Chemosphere; 2006 May; 63(8):1300-3. PubMed ID: 16325884 [TBL] [Abstract][Full Text] [Related]
6. Consumer control of salt marshes driven by human disturbance. Bertness MD; Silliman BR Conserv Biol; 2008 Jun; 22(3):618-23. PubMed ID: 18577090 [TBL] [Abstract][Full Text] [Related]
7. Long-term effects of mercury in a salt marsh: hysteresis in the distribution of vegetation following recovery from contamination. Válega M; Lillebø AI; Pereira ME; Duarte AC; Pardal MA Chemosphere; 2008 Mar; 71(4):765-72. PubMed ID: 18061237 [TBL] [Abstract][Full Text] [Related]
8. Exploiting wild population diversity and somaclonal variation in the salt marsh grass Distichlis spicata (Poaceae) for marsh creation and restoration. Seliskar DM; Gallagher JL Am J Bot; 2000 Jan; 87(1):141-6. PubMed ID: 10636837 [TBL] [Abstract][Full Text] [Related]
9. Self-organization and vegetation collapse in salt marsh ecosystems. van de Koppel J; van der Wal D; Bakker JP; Herman PM Am Nat; 2005 Jan; 165(1):E1-12. PubMed ID: 15729634 [TBL] [Abstract][Full Text] [Related]
10. Ionic alkylleads in herring gulls from the Great Lakes region. Forsyth DS; Marshall WD Environ Sci Technol; 1986 Oct; 20(10):1033-8. PubMed ID: 22257404 [No Abstract] [Full Text] [Related]
11. A review of current salt marsh management issues in Florida. Carlson DB; O'Bryan PD; Rey JR J Am Mosq Control Assoc; 1991 Mar; 7(1):83-8. PubMed ID: 1675260 [TBL] [Abstract][Full Text] [Related]
12. Salt marsh mosquito control in Portsmouth, Rhode Island. Christie GD J Am Mosq Control Assoc; 1990 Mar; 6(1):144-7. PubMed ID: 2324720 [TBL] [Abstract][Full Text] [Related]
13. Effect of metal accumulation on metallothionein level and condition of the periwinkle Littorina littorea along the Scheldt estuary (the Netherlands). Van den Broeck H; De Wolf H; Backeljau T; Blust R Environ Pollut; 2010 May; 158(5):1791-9. PubMed ID: 19948373 [TBL] [Abstract][Full Text] [Related]
14. Salt marsh sediment bacteria: their distribution and response to external nutrient inputs. Bowen JL; Crump BC; Deegan LA; Hobbie JE ISME J; 2009 Aug; 3(8):924-34. PubMed ID: 19421233 [TBL] [Abstract][Full Text] [Related]
15. Influence of salt marsh on bacterial activity in two estuaries with different hydrodynamic characteristics (Ria de Aveiro and Tagus Estuary). Santos L; Cunha A; Silva H; Caçador I; Dias JM; Almeida A FEMS Microbiol Ecol; 2007 Jun; 60(3):429-41. PubMed ID: 17374125 [TBL] [Abstract][Full Text] [Related]
16. Arsenic species extraction of biological marine samples (Periwinkles, Littorina littorea) from a highly contaminated site. Whaley-Martin KJ; Koch I; Reimer KJ Talanta; 2012 Jan; 88():187-92. PubMed ID: 22265486 [TBL] [Abstract][Full Text] [Related]
17. [Age-related characteristics of the infestation of populations of the littoral periwinkles Littorina obtusata and L. saxatilis by trematode parthenitae]. Granovich AI; Mikhaĭlova NA; Sergievskiĭ SO Parazitologiia; 1987; 21(6):721-9. PubMed ID: 3438095 [TBL] [Abstract][Full Text] [Related]
18. Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Zhou J; Wu Y; Zhang J; Kang Q; Liu Z Chemosphere; 2006 Oct; 65(2):310-7. PubMed ID: 16564069 [TBL] [Abstract][Full Text] [Related]
19. Uptake and depuration of 131I by the edible periwinkle Littorina littorea: uptake from labelled seaweed (Chondrus crispus). Wilson RC; Vives i Batlle J; McDonald P; Parker TG J Environ Radioact; 2005; 80(3):259-71. PubMed ID: 15725502 [TBL] [Abstract][Full Text] [Related]
20. Florida's salt-marsh management issues: 1991-98. Carlson DB; O'Bryan PD; Rey JR J Am Mosq Control Assoc; 1999 Jun; 15(2):186-93. PubMed ID: 10412113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]