These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22196020)

  • 1. Secondary interactions involving zinc-bound ligands: roles in structural stabilization and macromolecular interactions.
    Namuswe F; Berg JM
    J Inorg Biochem; 2012 Jun; 111():146-9. PubMed ID: 22196020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues.
    Hunt JA; Ahmed M; Fierke CA
    Biochemistry; 1999 Jul; 38(28):9054-62. PubMed ID: 10413479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity.
    Lesburg CA; Huang C; Christianson DW; Fierke CA
    Biochemistry; 1997 Dec; 36(50):15780-91. PubMed ID: 9398308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New perspectives of zinc coordination environments in proteins.
    Maret W
    J Inorg Biochem; 2012 Jun; 111():110-6. PubMed ID: 22196021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Putting the pieces into place: Properties of intact zinc metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase.
    Pinter TB; Stillman MJ
    Biochem J; 2015 Nov; 471(3):347-56. PubMed ID: 26475450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural biology of zinc.
    Christianson DW
    Adv Protein Chem; 1991; 42():281-355. PubMed ID: 1793007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: applications to structural and energetic analysis.
    Elstner M; Cui Q; Munih P; Kaxiras E; Frauenheim T; Karplus M
    J Comput Chem; 2003 Apr; 24(5):565-81. PubMed ID: 12632471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between Carbonic Anhydrases and Metallothioneins: Structural Control of Metalation.
    Wong DL; Yuan AT; Korkola NC; Stillman MJ
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ins and outs of biological zinc sites.
    Auld DS
    Biometals; 2009 Feb; 22(1):141-8. PubMed ID: 19140015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural consequences of redesigning a protein-zinc binding site.
    Ippolito JA; Christianson DW
    Biochemistry; 1994 Dec; 33(51):15241-9. PubMed ID: 7803386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing hydrolytic zinc metalloenzymes.
    Zastrow ML; Pecoraro VL
    Biochemistry; 2014 Feb; 53(6):957-78. PubMed ID: 24506795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc binding in pestivirus N(pro) is required for interferon regulatory factor 3 interaction and degradation.
    Szymanski MR; Fiebach AR; Tratschin JD; Gut M; Ramanujam VM; Gottipati K; Patel P; Ye M; Ruggli N; Choi KH
    J Mol Biol; 2009 Aug; 391(2):438-49. PubMed ID: 19540847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structure of the Brucella abortus metalloprotein RicA, a Rab2-binding virulence effector.
    Herrou J; Crosson S
    Biochemistry; 2013 Dec; 52(50):9020-8. PubMed ID: 24251537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution NMR structure of the iron-sulfur cluster assembly protein U (IscU) with zinc bound at the active site.
    Ramelot TA; Cort JR; Goldsmith-Fischman S; Kornhaber GJ; Xiao R; Shastry R; Acton TB; Honig B; Montelione GT; Kennedy MA
    J Mol Biol; 2004 Nov; 344(2):567-83. PubMed ID: 15522305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins.
    Barraud P; Schubert M; Allain FH
    J Biomol NMR; 2012 Jun; 53(2):93-101. PubMed ID: 22528293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How First Shell-Second Shell Interactions and Metal Substitution Modulate Protein Function.
    Mazmanian K; Dudev T; Lim C
    Inorg Chem; 2018 Nov; 57(22):14052-14061. PubMed ID: 29906119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the "cab"-type beta class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum.
    Strop P; Smith KS; Iverson TM; Ferry JG; Rees DC
    J Biol Chem; 2001 Mar; 276(13):10299-305. PubMed ID: 11096105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II.
    Huang CC; Lesburg CA; Kiefer LL; Fierke CA; Christianson DW
    Biochemistry; 1996 Mar; 35(11):3439-46. PubMed ID: 8639494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function and mechanism of zinc metalloenzymes.
    McCall KA; Huang C; Fierke CA
    J Nutr; 2000 May; 130(5S Suppl):1437S-46S. PubMed ID: 10801957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between α- and β-carbonic anhydrases: can Zn(His)3(H2O) and Zn(His)(Cys)2(H2O) sites lead to equivalent enzymes?
    Pannetier F; Ohanessian G; Frison G
    Dalton Trans; 2011 Mar; 40(12):2696-8. PubMed ID: 21298147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.