These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 22196028)
1. Optimization of HNO production from N,O-bis-acylated hydroxylamine derivatives. Sutton AD; Williamson M; Weismiller H; Toscano JP Org Lett; 2012 Jan; 14(2):472-5. PubMed ID: 22196028 [TBL] [Abstract][Full Text] [Related]
2. The Underlying Mechanism of HNO Production by the Myoglobin-Mediated Oxidation of Hydroxylamine. Álvarez L; Suárez SA; González PJ; Brondino CD; Doctorovich F; Martí MA Inorg Chem; 2020 Jun; 59(12):7939-7952. PubMed ID: 32436700 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of N-hydroxy-l-arginine by hypochlorous acid to form nitroxyl (HNO). Cline MR; Chavez TA; Toscano JP J Inorg Biochem; 2013 Jan; 118():148-54. PubMed ID: 23102772 [TBL] [Abstract][Full Text] [Related]
4. N-hydroxybenzenecarboximidic acid derivatives: a new class of nitroxyl-generating prodrugs. Lee MJ; Shoeman DW; Goon DJ; Nagasawa HT Nitric Oxide; 2001 Jun; 5(3):278-87. PubMed ID: 11384201 [TBL] [Abstract][Full Text] [Related]
5. Development of N-substituted hydroxylamines as efficient nitroxyl (HNO) donors. Guthrie DA; Kim NY; Siegler MA; Moore CD; Toscano JP J Am Chem Soc; 2012 Feb; 134(4):1962-5. PubMed ID: 22233148 [TBL] [Abstract][Full Text] [Related]
6. N-Hydroxy sulfonimidamides as new nitroxyl (HNO) donors. Pennington RL; Sha X; King SB Bioorg Med Chem Lett; 2005 May; 15(9):2331-4. PubMed ID: 15837319 [TBL] [Abstract][Full Text] [Related]
7. Metal-catalyzed anaerobic disproportionation of hydroxylamine. Role of diazene and nitroxyl intermediates in the formation of N2, N2O, NO+, and NH3. Alluisetti GE; Almaraz AE; Amorebieta VT; Doctorovich F; Olabe JA J Am Chem Soc; 2004 Oct; 126(41):13432-42. PubMed ID: 15479100 [TBL] [Abstract][Full Text] [Related]
9. Generation of nitroxyl by heme protein-mediated peroxidation of hydroxylamine but not N-hydroxy-L-arginine. Donzelli S; Espey MG; Flores-Santana W; Switzer CH; Yeh GC; Huang J; Stuehr DJ; King SB; Miranda KM; Wink DA Free Radic Biol Med; 2008 Sep; 45(5):578-84. PubMed ID: 18503778 [TBL] [Abstract][Full Text] [Related]
10. The use of cyclic nitroxide radicals as HNO scavengers. Samuni Y; Samuni U; Goldstein S J Inorg Biochem; 2013 Jan; 118():155-61. PubMed ID: 23122928 [TBL] [Abstract][Full Text] [Related]
11. Iron catalyzed conversion of NO into nitrosonium (NO+) and nitroxyl (HNO/NO-) species. Stojanović S; Stanić D; Nikolić M; Spasić M; Niketić V Nitric Oxide; 2004 Nov; 11(3):256-62. PubMed ID: 15566972 [TBL] [Abstract][Full Text] [Related]
13. Discriminating formation of HNO from other reactive nitrogen oxide species. Donzelli S; Espey MG; Thomas DD; Mancardi D; Tocchetti CG; Ridnour LA; Paolocci N; King SB; Miranda KM; Lazzarino G; Fukuto JM; Wink DA Free Radic Biol Med; 2006 Mar; 40(6):1056-66. PubMed ID: 16540401 [TBL] [Abstract][Full Text] [Related]
14. Kinetic and thermodynamic properties of the aminoxyl (NH2O*) radical. Lind J; Merényi G J Phys Chem A; 2006 Jan; 110(1):192-7. PubMed ID: 16392855 [TBL] [Abstract][Full Text] [Related]
15. Nitroxyl (HNO) release from new functionalized N-hydroxyurea-derived acyl nitroso-9,10-dimethylanthracene cycloadducts. Zeng BB; Huang J; Wright MW; King SB Bioorg Med Chem Lett; 2004 Nov; 14(22):5565-8. PubMed ID: 15482925 [TBL] [Abstract][Full Text] [Related]
16. On the distinction between nitroxyl and nitric oxide using nitronyl nitroxides. Samuni U; Samuni Y; Goldstein S J Am Chem Soc; 2010 Jun; 132(24):8428-32. PubMed ID: 20504018 [TBL] [Abstract][Full Text] [Related]
17. New insights into the S-nitrosothiol-ascorbate reaction. The formation of nitroxyl. Kirsch M; Büscher AM; Aker S; Schulz R; de Groot H Org Biomol Chem; 2009 May; 7(9):1954-62. PubMed ID: 19590793 [TBL] [Abstract][Full Text] [Related]