These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 22196072)
1. A feasible method for growing fungal pellets in a column reactor inoculated with mycelium fragments and their application for dye bioaccumulation from aqueous solution. Xin B; Xia Y; Zhang Y; Aslam H; Liu C; Chen S Bioresour Technol; 2012 Feb; 105():100-5. PubMed ID: 22196072 [TBL] [Abstract][Full Text] [Related]
2. Bioaccumulation of Cu-complex reactive dye by growing pellets of Penicillium oxalicum and its mechanism. Xin B; Chen G; Zheng W Water Res; 2010 Jun; 44(12):3565-72. PubMed ID: 20421123 [TBL] [Abstract][Full Text] [Related]
3. [Forming mycelium pellet and decolorization of dye wastewater under opening conditions]. Liu XM; Xin BP; Li W; Li ZH; Xu WG Huan Jing Ke Xue; 2005 Jul; 26(4):143-6. PubMed ID: 16212185 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye. Akar T; Tosun I; Kaynak Z; Kavas E; Incirkus G; Akar ST J Hazard Mater; 2009 Nov; 171(1-3):865-71. PubMed ID: 19631464 [TBL] [Abstract][Full Text] [Related]
5. Polishing of pretreated dye wastewater using novel sequencing batch reactors. Singh KS; LeBlanc MM; Bhattacharyya D Water Sci Technol; 2008; 58(2):407-11. PubMed ID: 18701793 [TBL] [Abstract][Full Text] [Related]
6. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Taştan BE; Ertuğrul S; Dönmez G Bioresour Technol; 2010 Feb; 101(3):870-6. PubMed ID: 19773159 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the efficacy of live and autoclaved mycelium of Trichoderm harzianum on the removal of trypan blue. Sadhasivam S; Saritha E; Savitha S; Swaminathan K Bull Environ Contam Toxicol; 2005 Nov; 75(5):1046-53. PubMed ID: 16400597 [No Abstract] [Full Text] [Related]
8. Removal of a dye from simulated wastewater by adsorption using treated parthenium biomass. Lata H; Mor S; Garg VK; Gupta RK J Hazard Mater; 2008 May; 153(1-2):213-20. PubMed ID: 17884283 [TBL] [Abstract][Full Text] [Related]
9. Preparation of sludge-based activated carbon and its application in dye wastewater treatment. Wang X; Zhu N; Yin B J Hazard Mater; 2008 May; 153(1-2):22-7. PubMed ID: 17869413 [TBL] [Abstract][Full Text] [Related]
10. Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse. Khadhraoui M; Trabelsi H; Ksibi M; Bouguerra S; Elleuch B J Hazard Mater; 2009 Jan; 161(2-3):974-81. PubMed ID: 18515006 [TBL] [Abstract][Full Text] [Related]
11. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
12. Photocatalytic degradation of dye effluent by titanium dioxide pillar pellets in aqueous solution. Li YC; Zou LD; Hu E J Environ Sci (China); 2004; 16(3):375-9. PubMed ID: 15272706 [TBL] [Abstract][Full Text] [Related]
13. Biodegradation of diesel fuel-contaminated wastewater using a three-phase fluidized bed reactor. Lohi A; Alvarez Cuenca M; Anania G; Upreti SR; Wan L J Hazard Mater; 2008 Jun; 154(1-3):105-11. PubMed ID: 18006229 [TBL] [Abstract][Full Text] [Related]
14. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon]. Xie ZG; Qiu XM; Zhao YL Huan Jing Ke Xue; 2012 Jan; 33(1):124-8. PubMed ID: 22452199 [TBL] [Abstract][Full Text] [Related]
15. Integration of nanofiltration and biological degradation of textile wastewater containing azo dye. Paździor K; Klepacz-Smółka A; Ledakowicz S; Sójka-Ledakowicz J; Mrozińska Z; Zyłła R Chemosphere; 2009 Apr; 75(2):250-5. PubMed ID: 19155044 [TBL] [Abstract][Full Text] [Related]
16. Decolorization of dyes and textile wastewater by potassium permanganate. Xu XR; Li HB; Wang WH; Gu JD Chemosphere; 2005 May; 59(6):893-8. PubMed ID: 15811419 [TBL] [Abstract][Full Text] [Related]
17. Some properties of a sequencing batch reactor system for removal of vat dyes. Sirianuntapiboon S; Chairattanawan K; Jungphungsukpanich S Bioresour Technol; 2006 Jul; 97(10):1243-52. PubMed ID: 16023339 [TBL] [Abstract][Full Text] [Related]
18. Comparative studies on removal of Congo red by native and modified mycelial pellets of Trametes versicolor in various reactor modes. Binupriya AR; Sathishkumar M; Swaminathan K; Kuz CS; Yun SE Bioresour Technol; 2008 Mar; 99(5):1080-8. PubMed ID: 17416520 [TBL] [Abstract][Full Text] [Related]
19. Degradation of low and high molecular weight fractions of softwood bleachery effluents by Penicillium camemberti in up-flow column reactor. Taşeli BK; Gökçay CF Bull Environ Contam Toxicol; 2006 Mar; 76(3):481-9. PubMed ID: 16652263 [No Abstract] [Full Text] [Related]
20. Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors. Khelifi E; Gannoun H; Touhami Y; Bouallagui H; Hamdi M J Hazard Mater; 2008 Apr; 152(2):683-9. PubMed ID: 17825985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]