These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22196229)

  • 61. In vivo genotoxicity of selected herbicides in the mouse bone-marrow micronucleus test.
    Gebel T; Kevekordes S; Pav K; Edenharder R; Dunkelberg H
    Arch Toxicol; 1997; 71(3):193-7. PubMed ID: 9049057
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Morphological transformation induced by multiwall carbon nanotubes on Balb/3T3 cell model as an in vitro end point of carcinogenic potential.
    Ponti J; Broggi F; Mariani V; De Marzi L; Colognato R; Marmorato P; Gioria S; Gilliland D; Pascual Garcìa C; Meschini S; Stringaro A; Molinari A; Rauscher H; Rossi F
    Nanotoxicology; 2013 Mar; 7(2):221-33. PubMed ID: 22279961
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Genetic toxicity assessment using liver cell models: past, present, and future.
    Guo X; Seo JE; Li X; Mei N
    J Toxicol Environ Health B Crit Rev; 2020; 23(1):27-50. PubMed ID: 31746269
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo.
    Magkoufopoulou C; Claessen SM; Tsamou M; Jennen DG; Kleinjans JC; van Delft JH
    Carcinogenesis; 2012 Jul; 33(7):1421-9. PubMed ID: 22623647
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A comprehensive review about micronuclei: mechanisms of formation and practical aspects in genotoxicity testing.
    Bolt HM; Stewart JD; Hengstler JG
    Arch Toxicol; 2011 Aug; 85(8):861-2. PubMed ID: 21789669
    [No Abstract]   [Full Text] [Related]  

  • 66. Comparison of results from mouse bone marrow chromosome aberration and micronucleus tests.
    Shelby MD; Witt KL
    Environ Mol Mutagen; 1995; 25(4):302-13. PubMed ID: 7607185
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Limitations of pesticide genotoxicity testing using the bacterial in vitro method.
    Ilyushina N; Egorova O; Rakitskii V
    Toxicol In Vitro; 2019 Jun; 57():110-116. PubMed ID: 30807808
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Data-based review of QSARs for predicting genotoxicity: the state of the art.
    Benigni R; Bossa C
    Mutagenesis; 2019 Mar; 34(1):17-23. PubMed ID: 30260416
    [TBL] [Abstract][Full Text] [Related]  

  • 69. QSAR and metabolic assessment tools in the assessment of genotoxicity.
    Worth AP; Lapenna S; Serafimova R
    Methods Mol Biol; 2013; 930():125-62. PubMed ID: 23086840
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In vitro Cytotoxicity and Genotoxicity Analysis of Ten Tannery Chemicals Using SOS/umu Tests and High-content In vitro Micronucleus Tests.
    Huang Z; Li N; Rao K; Liu C; Wang Z; Ma M
    Comb Chem High Throughput Screen; 2018; 21(4):262-270. PubMed ID: 29600754
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vivo micronucleus assay and GST activity in assessing genotoxicity of plumbagin in Swiss albino mice.
    SivaKumar V; Prakash R; Murali MR; Devaraj H; Niranjali Devaraj S
    Drug Chem Toxicol; 2005; 28(4):499-507. PubMed ID: 16298878
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Toxicokinetic testing strategies to demonstrate bone marrow exposure in in vivo micronucleus study for genotoxicity assessment of agrochemicals.
    Nallani GC; Liu Z; Chandrasekaran A
    Regul Toxicol Pharmacol; 2020 Feb; 110():104552. PubMed ID: 31836537
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Topological structural alerts modulations of mammalian cell mutagenicity for halogenated derivatives.
    Pérez-Garrido A; Girón-Rodríguez F; Morales Helguera A; Borges F; Combes RD
    SAR QSAR Environ Res; 2014; 25(1):17-33. PubMed ID: 24283490
    [TBL] [Abstract][Full Text] [Related]  

  • 74. 1,4-Dioxane: prediction of in vivo clastogenicity.
    Rosenkranz HS; Klopman G
    Mutat Res; 1992 Oct; 280(4):245-51. PubMed ID: 1382225
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of improved QSAR models for predicting the outcome of the in vivo micronucleus genetic toxicity assay.
    Yoo JW; Kruhlak NL; Landry C; Cross KP; Sedykh A; Stavitskaya L
    Regul Toxicol Pharmacol; 2020 Jun; 113():104620. PubMed ID: 32092371
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Toward regulatory acceptance and improving the prediction confidence of in silico approaches: a case study of genotoxicity.
    Tcheremenskaia O; Benigni R
    Expert Opin Drug Metab Toxicol; 2021 Aug; 17(8):987-1005. PubMed ID: 34078212
    [No Abstract]   [Full Text] [Related]  

  • 77. New QSAR models to predict chromosome damaging potential based on the in vivo micronucleus test.
    Van Bossuyt M; Raitano G; Honma M; Van Hoeck E; Vanhaecke T; Rogiers V; Mertens B; Benfenati E
    Toxicol Lett; 2020 Sep; 329():80-84. PubMed ID: 32360788
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An evaluation of in-house and off-the-shelf in silico models: implications on guidance for mutagenicity assessment.
    Jolly R; Ahmed KB; Zwickl C; Watson I; Gombar V
    Regul Toxicol Pharmacol; 2015 Apr; 71(3):388-97. PubMed ID: 25656493
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Activity of the human carcinogen MeCCNU in the mouse bone marrow micronucleus assay.
    Tinwell H; Ashby J
    Environ Mol Mutagen; 1991; 17(3):152-4. PubMed ID: 2022193
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In Silico Approaches in Predictive Genetic Toxicology.
    Sinha M; Dhawan A; Parthasarathi R
    Methods Mol Biol; 2019; 2031():351-373. PubMed ID: 31473971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.