BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 22196235)

  • 21. Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach.
    Katzen F; Fletcher JE; Yang JP; Kang D; Peterson TC; Cappuccio JA; Blanchette CD; Sulchek T; Chromy BA; Hoeprich PD; Coleman MA; Kudlicki W
    J Proteome Res; 2008 Aug; 7(8):3535-42. PubMed ID: 18557639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-throughput single-molecule force spectroscopy for membrane proteins.
    Bosshart PD; Casagrande F; Frederix PL; Ratera M; Bippes CA; Müller DJ; Palacin M; Engel A; Fotiadis D
    Nanotechnology; 2008 Sep; 19(38):384014. PubMed ID: 21832573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nanodisc: a novel tool for membrane protein studies.
    Borch J; Hamann T
    Biol Chem; 2009 Aug; 390(8):805-14. PubMed ID: 19453280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions.
    Medalsy ID; Müller DJ
    ACS Nano; 2013 Mar; 7(3):2642-50. PubMed ID: 23442147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bending of purple membranes in dependence on the pH analyzed by AFM and single molecule force spectroscopy.
    Baumann RP; Schranz M; Hampp N
    Phys Chem Chem Phys; 2010 May; 12(17):4329-35. PubMed ID: 20407703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-molecule studies of membrane proteins.
    Müller DJ; Sapra KT; Scheuring S; Kedrov A; Frederix PL; Fotiadis D; Engel A
    Curr Opin Struct Biol; 2006 Aug; 16(4):489-95. PubMed ID: 16797964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single molecule studies of antibody-antigen interaction strength versus intra-molecular antigen stability.
    Kienberger F; Kada G; Mueller H; Hinterdorfer P
    J Mol Biol; 2005 Apr; 347(3):597-606. PubMed ID: 15755453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin.
    Cisneros DA; Oesterhelt D; Müller DJ
    Structure; 2005 Feb; 13(2):235-42. PubMed ID: 15698567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-molecule force spectroscopy of G-protein-coupled receptors.
    Zocher M; Bippes CA; Zhang C; Müller DJ
    Chem Soc Rev; 2013 Oct; 42(19):7801-15. PubMed ID: 23799399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic single-molecule force spectroscopy of rhodopsin in native membranes.
    Park PS; Müller DJ
    Methods Mol Biol; 2015; 1271():173-85. PubMed ID: 25697524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of phospholipid composition and phase on nanodisc films at the solid-liquid interface as studied by neutron reflectivity.
    Wadsäter M; Barker R; Mortensen K; Feidenhans'l R; Cárdenas M
    Langmuir; 2013 Mar; 29(9):2871-80. PubMed ID: 23373466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs.
    Ritchie TK; Grinkova YV; Bayburt TH; Denisov IG; Zolnerciks JK; Atkins WM; Sligar SG
    Methods Enzymol; 2009; 464():211-31. PubMed ID: 19903557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy.
    Glück JM; Wittlich M; Feuerstein S; Hoffmann S; Willbold D; Koenig BW
    J Am Chem Soc; 2009 Sep; 131(34):12060-1. PubMed ID: 19663495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane.
    Müller DJ; Sass HJ; Müller SA; Büldt G; Engel A
    J Mol Biol; 1999 Feb; 285(5):1903-9. PubMed ID: 9925773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure retention of silica gel-encapsulated bacteriorhodopsin in purple membrane and in lipid nanodiscs.
    Gakhar S; Risbud SH; Longo ML
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110680. PubMed ID: 31835183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and mechanics of membrane proteins.
    Engel A; Gaub HE
    Annu Rev Biochem; 2008; 77():127-48. PubMed ID: 18518819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the energy landscape of the membrane protein bacteriorhodopsin.
    Janovjak H; Struckmeier J; Hubain M; Kedrov A; Kessler M; Müller DJ
    Structure; 2004 May; 12(5):871-9. PubMed ID: 15130479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR.
    Hagn F; Nasr ML; Wagner G
    Nat Protoc; 2018 Jan; 13(1):79-98. PubMed ID: 29215632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM.
    Efremov RG; Gatsogiannis C; Raunser S
    Methods Enzymol; 2017; 594():1-30. PubMed ID: 28779836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amphipathic polymers: tools to fold integral membrane proteins to their active form.
    Pocanschi CL; Dahmane T; Gohon Y; Rappaport F; Apell HJ; Kleinschmidt JH; Popot JL
    Biochemistry; 2006 Nov; 45(47):13954-61. PubMed ID: 17115690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.