These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22196275)

  • 21. Biodegradable dextran nanogels as functional carriers for the intracellular delivery of small interfering RNA.
    Raemdonck K; Naeye B; Høgset A; Demeester J; De Smedt SC
    J Control Release; 2010 Nov; 148(1):e95-6. PubMed ID: 21529657
    [No Abstract]   [Full Text] [Related]  

  • 22. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide.
    Zhang L; Lu Z; Zhao Q; Huang J; Shen H; Zhang Z
    Small; 2011 Feb; 7(4):460-4. PubMed ID: 21360803
    [No Abstract]   [Full Text] [Related]  

  • 23. Targeted delivery systems of small interfering RNA by systemic administration.
    Kawakami S; Hashida M
    Drug Metab Pharmacokinet; 2007 Jun; 22(3):142-51. PubMed ID: 17603214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Switchable delivery of small interfering RNA using a negatively charged pH-responsive polyethylenimine-based polyelectrolyte complex.
    Tseng SJ; Zeng YF; Deng YF; Yang PC; Liu JR; Kempson IM
    Chem Commun (Camb); 2013 Apr; 49(26):2670-2. PubMed ID: 23435386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acute in vivo toxicity mitigation of PEI-coated maghemite nanoparticles using controlled oxidation and surface modifications toward siRNA delivery.
    Israel LL; Lellouche E; Ostrovsky S; Yarmiayev V; Bechor M; Michaeli S; Lellouche JP
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15240-55. PubMed ID: 26120905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tumor-targeting multifunctional nanoparticles for siRNA delivery: recent advances in cancer therapy.
    Ku SH; Kim K; Choi K; Kim SH; Kwon IC
    Adv Healthc Mater; 2014 Aug; 3(8):1182-93. PubMed ID: 24577795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in siRNA delivery in cancer therapy.
    Singh A; Trivedi P; Jain NK
    Artif Cells Nanomed Biotechnol; 2018 Mar; 46(2):274-283. PubMed ID: 28423924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Vivo Antitumor Activity of Folate-Conjugated Cholic Acid-Polyethylenimine Micelles for the Codelivery of Doxorubicin and siRNA to Colorectal Adenocarcinomas.
    Amjad MW; Amin MC; Katas H; Butt AM; Kesharwani P; Iyer AK
    Mol Pharm; 2015 Dec; 12(12):4247-58. PubMed ID: 26567518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Advances in Engineering Carriers for siRNA Delivery.
    Yang C; Lin ZI; Zhang X; Xu Z; Xu G; Wang YM; Tsai TH; Cheng PW; Law WC; Yong KT; Chen CK
    Macromol Biosci; 2024 Apr; 24(4):e2300362. PubMed ID: 38150293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lyophilised ready-to-use formulations of PEG-PCL-PEI nano-carriers for siRNA delivery.
    Endres T; Zheng M; Beck-Broichsitter M; Kissel T
    Int J Pharm; 2012 May; 428(1-2):121-4. PubMed ID: 22414387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ternary complexes of folate-PEG-appended dendrimer (G4)/α-cyclodextrin conjugate, siRNA and low-molecular-weight polysaccharide sacran as a novel tumor-selective siRNA delivery system.
    Ohyama A; Higashi T; Motoyama K; Arima H
    Int J Biol Macromol; 2017 Jun; 99():21-28. PubMed ID: 28223132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery.
    Prabhakar N; Zhang J; Desai D; Casals E; Gulin-Sarfraz T; Näreoja T; Westermarck J; Rosenholm JM
    Int J Nanomedicine; 2016; 11():6591-6608. PubMed ID: 27994460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long dsRNA-mediated RNA interference and immunostimulation: a targeted delivery approach using polyethyleneimine based nano-carriers.
    Sajeesh S; Lee TY; Hong SW; Dua P; Choe JY; Kang A; Yun WS; Song C; Park SH; Kim S; Li C; Lee DK
    Mol Pharm; 2014 Mar; 11(3):872-84. PubMed ID: 24521200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyaluronic acid-siRNA conjugate/reducible polyethylenimine complexes for targeted siRNA delivery.
    Jang YL; Ku SH; Jin S; Park JH; Kim WJ; Kwon IC; Kim SH; Jeong JH
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7388-94. PubMed ID: 25942799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.
    Zhou Y; Zhang C; Liang W
    J Control Release; 2014 Nov; 193():270-81. PubMed ID: 24816071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient intracellular delivery and multiple-target gene silencing triggered by tripodal RNA based nanoparticles: a promising approach in liver-specific RNAi delivery.
    Sajeesh S; Lee TY; Kim JK; Son DS; Hong SW; Kim S; Yun WS; Kim S; Chang C; Li C; Lee DK
    J Control Release; 2014 Dec; 196():28-36. PubMed ID: 25251899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Crosslinked Nucleic Acid Nanogel for Effective siRNA Delivery and Antitumor Therapy.
    Ding F; Mou Q; Ma Y; Pan G; Guo Y; Tong G; Choi CHJ; Zhu X; Zhang C
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3064-3068. PubMed ID: 29364558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipidic systems for in vivo siRNA delivery.
    Wu SY; McMillan NA
    AAPS J; 2009 Dec; 11(4):639-52. PubMed ID: 19757082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surfactant protein B (SP-B) enhances the cellular siRNA delivery of proteolipid coated nanogels for inhalation therapy.
    Merckx P; De Backer L; Van Hoecke L; Guagliardo R; Echaide M; Baatsen P; Olmeda B; Saelens X; Pérez-Gil J; De Smedt SC; Raemdonck K
    Acta Biomater; 2018 Sep; 78():236-246. PubMed ID: 30118853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold nanostar-polymer hybrids for siRNA delivery: Polymer design towards colloidal stability and in vitro studies on breast cancer cells.
    Sardo C; Bassi B; Craparo EF; Scialabba C; Cabrini E; Dacarro G; D'Agostino A; Taglietti A; Giammona G; Pallavicini P; Cavallaro G
    Int J Pharm; 2017 Mar; 519(1-2):113-124. PubMed ID: 28093325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.