BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 22196731)

  • 1. Hot spots for allosteric regulation on protein surfaces.
    Reynolds KA; McLaughlin RN; Ranganathan R
    Cell; 2011 Dec; 147(7):1564-75. PubMed ID: 22196731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allosteric communication in dihydrofolate reductase: signaling network and pathways for closed to occluded transition and back.
    Chen J; Dima RI; Thirumalai D
    J Mol Biol; 2007 Nov; 374(1):250-66. PubMed ID: 17916364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structurally distributed surface sites tune allosteric regulation.
    McCormick JW; Russo MA; Thompson S; Blevins A; Reynolds KA
    Elife; 2021 Jun; 10():. PubMed ID: 34132193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface sites for engineering allosteric control in proteins.
    Lee J; Natarajan M; Nashine VC; Socolich M; Vo T; Russ WP; Benkovic SJ; Ranganathan R
    Science; 2008 Oct; 322(5900):438-42. PubMed ID: 18927392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway.
    Oyen D; Fenwick RB; Stanfield RL; Dyson HJ; Wright PE
    J Am Chem Soc; 2015 Jul; 137(29):9459-68. PubMed ID: 26147643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis.
    Bhabha G; Lee J; Ekiert DC; Gam J; Wilson IA; Dyson HJ; Benkovic SJ; Wright PE
    Science; 2011 Apr; 332(6026):234-8. PubMed ID: 21474759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entropic mechanism of allosteric communication in conformational transitions of dihydrofolate reductase.
    Terada TP; Kimura T; Sasai M
    J Phys Chem B; 2013 Oct; 117(42):12864-77. PubMed ID: 23705773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionarily conserved networks of residues mediate allosteric communication in proteins.
    Süel GM; Lockless SW; Wall MA; Ranganathan R
    Nat Struct Biol; 2003 Jan; 10(1):59-69. PubMed ID: 12483203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase.
    Knighton DR; Kan CC; Howland E; Janson CA; Hostomska Z; Welsh KM; Matthews DA
    Nat Struct Biol; 1994 Mar; 1(3):186-94. PubMed ID: 7656037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated identification of functional dynamic contact networks from X-ray crystallography.
    van den Bedem H; Bhabha G; Yang K; Wright PE; Fraser JS
    Nat Methods; 2013 Sep; 10(9):896-902. PubMed ID: 23913260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The spatial architecture of protein function and adaptation.
    McLaughlin RN; Poelwijk FJ; Raman A; Gosal WS; Ranganathan R
    Nature; 2012 Nov; 491(7422):138-42. PubMed ID: 23041932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance study of the role of M42 in the solution dynamics of Escherichia coli dihydrofolate reductase.
    Mauldin RV; Lee AL
    Biochemistry; 2010 Mar; 49(8):1606-15. PubMed ID: 20073522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that a 'dynamic knockout' in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis.
    Loveridge EJ; Behiry EM; Guo J; Allemann RK
    Nat Chem; 2012 Mar; 4(4):292-7. PubMed ID: 22437714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational relaxation following hydride transfer plays a limiting role in dihydrofolate reductase catalysis.
    Boehr DD; Dyson HJ; Wright PE
    Biochemistry; 2008 Sep; 47(35):9227-33. PubMed ID: 18690714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased thermal stability of site-selectively glycosylated dihydrofolate reductase.
    Swanwick RS; Daines AM; Tey LH; Flitsch SL; Allemann RK
    Chembiochem; 2005 Aug; 6(8):1338-40. PubMed ID: 16003807
    [No Abstract]   [Full Text] [Related]  

  • 18. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble.
    Pan H; Lee JC; Hilser VJ
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):12020-5. PubMed ID: 11035796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Searching sequence space: two different approaches to dihydrofolate reductase catalysis.
    Howell EE
    Chembiochem; 2005 Apr; 6(4):590-600. PubMed ID: 15812782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic energy landscape of dihydrofolate reductase catalysis.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Science; 2006 Sep; 313(5793):1638-42. PubMed ID: 16973882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.