BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22196900)

  • 1. A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions.
    Lu HF; Narayanan K; Lim SX; Gao S; Leong MF; Wan AC
    Biomaterials; 2012 Mar; 33(8):2419-30. PubMed ID: 22196900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile engineering of xeno-free microcarriers for the scalable cultivation of human pluripotent stem cells in stirred suspension.
    Fan Y; Hsiung M; Cheng C; Tzanakakis ES
    Tissue Eng Part A; 2014 Feb; 20(3-4):588-99. PubMed ID: 24098972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noggin maintains pluripotency of human embryonic stem cells grown on Matrigel.
    Chaturvedi G; Simone PD; Ain R; Soares MJ; Wolfe MW
    Cell Prolif; 2009 Aug; 42(4):425-33. PubMed ID: 19500111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds.
    Li Z; Leung M; Hopper R; Ellenbogen R; Zhang M
    Biomaterials; 2010 Jan; 31(3):404-12. PubMed ID: 19819007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development.
    Hunt NC; Hallam D; Karimi A; Mellough CB; Chen J; Steel DHW; Lako M
    Acta Biomater; 2017 Feb; 49():329-343. PubMed ID: 27826002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of human pluripotent stem cells to feeder-free conditions in chemically defined medium with enzymatic single-cell passaging.
    Stover AE; Schwartz PH
    Methods Mol Biol; 2011; 767():137-46. PubMed ID: 21822872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alginate Microfiber System for Expansion and Direct Differentiation of Human Embryonic Stem Cells.
    Leong MF; Lu HF; Lim TC; Narayanan K; Gao S; Wang LY; Toh RP; Funke H; Abdul Samad MH; Wan AC; Ying JY
    Tissue Eng Part C Methods; 2016 Sep; 22(9):884-94. PubMed ID: 27484909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions.
    Meng G; Liu S; Rancourt DE
    Stem Cells Dev; 2012 Jul; 21(11):2036-48. PubMed ID: 22149941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotype and gene expression of human mesenchymal stem cells in alginate scaffolds.
    Duggal S; Frønsdal KB; Szöke K; Shahdadfar A; Melvik JE; Brinchmann JE
    Tissue Eng Part A; 2009 Jul; 15(7):1763-73. PubMed ID: 19115828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient neuronal differentiation and maturation of human pluripotent stem cells encapsulated in 3D microfibrous scaffolds.
    Lu HF; Lim SX; Leong MF; Narayanan K; Toh RP; Gao S; Wan AC
    Biomaterials; 2012 Dec; 33(36):9179-87. PubMed ID: 22998816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a Vitronectin-Based Recombinant Protein as a Defined Substrate for Differentiation of Human Pluripotent Stem Cells into Hepatocyte-Like Cells.
    Nagaoka M; Kobayashi M; Kawai C; Mallanna SK; Duncan SA
    PLoS One; 2015; 10(8):e0136350. PubMed ID: 26308339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spatially and chemically defined platform for the uniform growth of human pluripotent stem cells.
    Jonas SJ; Alva JA; Richardson W; Sherman SP; Galic Z; Pyle AD; Dunn B
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):234-41. PubMed ID: 25428067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells.
    Mollamohammadi S; Taei A; Pakzad M; Totonchi M; Seifinejad A; Masoudi N; Baharvand H
    Hum Reprod; 2009 Oct; 24(10):2468-76. PubMed ID: 19602515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GMP scale-up and banking of pluripotent stem cells for cellular therapy applications.
    Ausubel LJ; Lopez PM; Couture LA
    Methods Mol Biol; 2011; 767():147-59. PubMed ID: 21822873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro.
    Domogatskaya A; Rodin S; Boutaud A; Tryggvason K
    Stem Cells; 2008 Nov; 26(11):2800-9. PubMed ID: 18757303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments.
    Carlson AL; Florek CA; Kim JJ; Neubauer T; Moore JC; Cohen RI; Kohn J; Grumet M; Moghe PV
    FASEB J; 2012 Aug; 26(8):3240-51. PubMed ID: 22542683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional assays for human embryonic stem cell pluripotency.
    O'Connor MD; Kardel MD; Eaves CJ
    Methods Mol Biol; 2011; 690():67-80. PubMed ID: 21042985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells.
    Liu L; Yoshioka M; Nakajima M; Ogasawara A; Liu J; Hasegawa K; Li S; Zou J; Nakatsuji N; Kamei K; Chen Y
    Biomaterials; 2014 Aug; 35(24):6259-67. PubMed ID: 24811263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microporous scaffolds support assembly and differentiation of pancreatic progenitors into β-cell clusters.
    Youngblood RL; Sampson JP; Lebioda KR; Shea LD
    Acta Biomater; 2019 Sep; 96():111-122. PubMed ID: 31247380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion of human embryonic stem cells on cellulose microcarriers.
    Chen AK; Chen X; Choo AB; Reuveny S; Oh SK
    Curr Protoc Stem Cell Biol; 2010 Sep; Chapter 1():Unit 1C.11. PubMed ID: 20814936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.