These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 22197176)
1. A genetic playground for enhancing grain number in cereals. Sreenivasulu N; Schnurbusch T Trends Plant Sci; 2012 Feb; 17(2):91-101. PubMed ID: 22197176 [TBL] [Abstract][Full Text] [Related]
2. Of floral fortune: tinkering with the grain yield potential of cereal crops. Sakuma S; Schnurbusch T New Phytol; 2020 Mar; 225(5):1873-1882. PubMed ID: 31509613 [TBL] [Abstract][Full Text] [Related]
3. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops. Zhang Y; Shen C; Shi J; Shi J; Zhang D J Exp Bot; 2024 Jan; 75(1):17-35. PubMed ID: 37935244 [TBL] [Abstract][Full Text] [Related]
4. Molecular Insights into Inflorescence Meristem Specification for Yield Potential in Cereal Crops. Wang C; Yang X; Li G Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805287 [TBL] [Abstract][Full Text] [Related]
5. Genetic modification of spikelet arrangement in wheat increases grain number without significantly affecting grain weight. Wolde GM; Mascher M; Schnurbusch T Mol Genet Genomics; 2019 Apr; 294(2):457-468. PubMed ID: 30591960 [TBL] [Abstract][Full Text] [Related]
6. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. Zwirek M; Waugh R; McKim SM New Phytol; 2019 Mar; 221(4):1950-1965. PubMed ID: 30339269 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional signatures of wheat inflorescence development. VanGessel C; Hamilton J; Tabbita F; Dubcovsky J; Pearce S Sci Rep; 2022 Oct; 12(1):17224. PubMed ID: 36241895 [TBL] [Abstract][Full Text] [Related]
8. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. Shanmugaraj N; Rajaraman J; Kale S; Kamal R; Huang Y; Thirulogachandar V; Garibay-Hernández A; Budhagatapalli N; Tandron Moya YA; Hajirezaei MR; Rutten T; Hensel G; Melzer M; Kumlehn J; von Wirén N; Mock HP; Schnurbusch T Plant Cell; 2023 Oct; 35(11):3973-4001. PubMed ID: 37282730 [TBL] [Abstract][Full Text] [Related]
9. 'Spikelet stop' determines the maximum yield potential stage in barley. Thirulogachandar V; Schnurbusch T J Exp Bot; 2021 Dec; 72(22):7743-7753. PubMed ID: 34291795 [TBL] [Abstract][Full Text] [Related]
10. Molecular Farming in Seed Crops: Gene Transfer into Barley (Hordeum vulgare ) and Wheat (Triticum aestivum ). Kapusi E; Stoger E Methods Mol Biol; 2022; 2480():49-60. PubMed ID: 35616856 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome Profiling of Wheat Inflorescence Development from Spikelet Initiation to Floral Patterning Identified Stage-Specific Regulatory Genes. Feng N; Song G; Guan J; Chen K; Jia M; Huang D; Wu J; Zhang L; Kong X; Geng S; Liu J; Li A; Mao L Plant Physiol; 2017 Jul; 174(3):1779-1794. PubMed ID: 28515146 [TBL] [Abstract][Full Text] [Related]
12. Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Koppolu R; Anwar N; Sakuma S; Tagiri A; Lundqvist U; Pourkheirandish M; Rutten T; Seiler C; Himmelbach A; Ariyadasa R; Youssef HM; Stein N; Sreenivasulu N; Komatsuda T; Schnurbusch T Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13198-203. PubMed ID: 23878219 [TBL] [Abstract][Full Text] [Related]
13. Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat. Philipp N; Weichert H; Bohra U; Weschke W; Schulthess AW; Weber H PLoS One; 2018; 13(10):e0205452. PubMed ID: 30304020 [TBL] [Abstract][Full Text] [Related]
14. Abiotic stress and control of grain number in cereals. Dolferus R; Ji X; Richards RA Plant Sci; 2011 Oct; 181(4):331-41. PubMed ID: 21889038 [TBL] [Abstract][Full Text] [Related]
15. The barley mutant multiflorus2.b reveals quantitative genetic variation for new spikelet architecture. Koppolu R; Jiang G; Milner SG; Muqaddasi QH; Rutten T; Himmelbach A; Guo Y; Stein N; Mascher M; Schnurbusch T Theor Appl Genet; 2022 Feb; 135(2):571-590. PubMed ID: 34773464 [TBL] [Abstract][Full Text] [Related]
16. Down-expression of TaPIN1s Increases the Tiller Number and Grain Yield in Wheat. Yao FQ; Li XH; Wang H; Song YN; Li ZQ; Li XG; Gao XQ; Zhang XS; Bie XM BMC Plant Biol; 2021 Sep; 21(1):443. PubMed ID: 34592922 [TBL] [Abstract][Full Text] [Related]
17. Cereal genetics: Novel modulators of spikelet number and flowering time. Li M; Jiao Y Curr Biol; 2024 Jun; 34(11):R528-R530. PubMed ID: 38834023 [TBL] [Abstract][Full Text] [Related]
18. CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability. Liu H; Wang K; Tang H; Gong Q; Du L; Pei X; Ye X J Genet Genomics; 2020 Sep; 47(9):563-575. PubMed ID: 33187879 [TBL] [Abstract][Full Text] [Related]
19. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions. Li Y; Cui Z; Ni Y; Zheng M; Yang D; Jin M; Chen J; Wang Z; Yin Y PLoS One; 2016; 11(5):e0155351. PubMed ID: 27171343 [TBL] [Abstract][Full Text] [Related]
20. Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes. Tuncel A; Okita TW Plant Sci; 2013 Oct; 211():52-60. PubMed ID: 23987811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]