These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 22197415)

  • 1. The effective time of centrifugation for the analysis of boundary spreading in sedimentation velocity experiments.
    Besong TM; Harding SE; Winzor DJ
    Anal Biochem; 2012 Feb; 421(2):755-8. PubMed ID: 22197415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allowance for boundary sharpening in the determination of diffusion coefficients by sedimentation velocity: a historical perspective.
    Winzor DJ; Scott DJ
    Biophys Rev; 2018 Feb; 10(1):3-13. PubMed ID: 29380276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mass determination by sedimentation velocity experiments and direct fitting of the concentration profiles.
    Behlke J; Ristau O
    Biophys J; 1997 Jan; 72(1):428-34. PubMed ID: 8994629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of weight average and direct boundary fitting of sedimentation velocity data for indefinite polymerizing systems.
    Sontag CA; Stafford WF; Correia JJ
    Biophys Chem; 2004 Mar; 108(1-3):215-30. PubMed ID: 15043931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of molecular parameters by fitting sedimentation data to finite-element solutions of the Lamm equation.
    Demeler B; Saber H
    Biophys J; 1998 Jan; 74(1):444-54. PubMed ID: 9449345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new approximate whole boundary solution of the Lamm differential equation for the analysis of sedimentation velocity experiments.
    Behlke J; Ristau O
    Biophys Chem; 2002 Jan; 95(1):59-68. PubMed ID: 11880173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved methods for fitting sedimentation coefficient distributions derived by time-derivative techniques.
    Philo JS
    Anal Biochem; 2006 Jul; 354(2):238-46. PubMed ID: 16730633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems.
    Schuck P; Perugini MA; Gonzales NR; Howlett GJ; Schubert D
    Biophys J; 2002 Feb; 82(2):1096-111. PubMed ID: 11806949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling.
    Schuck P
    Biophys J; 2000 Mar; 78(3):1606-19. PubMed ID: 10692345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for sedimentation in inhomogeneous media. II. Compressibility of aqueous and organic solvents.
    Schuck P
    Biophys Chem; 2004 Mar; 108(1-3):201-14. PubMed ID: 15043930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of diffusion coefficients by means of an approximate steady-state condition in sedimentation velocity distributions.
    Scott DJ; Harding SE; Winzor DJ
    Anal Biochem; 2015 Dec; 490():20-5. PubMed ID: 26321223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the analysis of sedimentation velocity in the study of protein complexes.
    Brown PH; Balbo A; Schuck P
    Eur Biophys J; 2009 Oct; 38(8):1079-99. PubMed ID: 19644686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions.
    Philo JS
    Anal Biochem; 2000 Mar; 279(2):151-63. PubMed ID: 10706784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved approximate solution of the Lamm equation for the simultaneous estimation of sedimentation and diffusion coefficients from sedimentation velocity experiments.
    Behlke J; Ristau O
    Biophys Chem; 1998 Feb; 70(2):133-46. PubMed ID: 17027450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of heterologous interacting systems by sedimentation velocity: curve fitting algorithms for estimation of sedimentation coefficients, equilibrium and kinetic constants.
    Stafford WF; Sherwood PJ
    Biophys Chem; 2004 Mar; 108(1-3):231-43. PubMed ID: 15043932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile.
    Stafford WF
    Anal Biochem; 1992 Jun; 203(2):295-301. PubMed ID: 1416025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved function for fitting sedimentation velocity data for low-molecular-weight solutes.
    Philo JS
    Biophys J; 1997 Jan; 72(1):435-44. PubMed ID: 8994630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid determination of molar mass in modified Archibald experiments using direct fitting of the Lamm equation.
    Schuck P; Millar DB
    Anal Biochem; 1998 May; 259(1):48-53. PubMed ID: 9606142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration dependence of translational diffusion coefficients for globular proteins.
    Scott DJ; Harding SE; Winzor DJ
    Analyst; 2014 Dec; 139(23):6242-8. PubMed ID: 25306977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.