BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22197554)

  • 1. Histone post-translational modifications associated to BAALC expression in leukemic cells.
    Franzoni A; Passon N; Fabbro D; Tiribelli M; Damiani D; Damante G
    Biochem Biophys Res Commun; 2012 Jan; 417(2):721-5. PubMed ID: 22197554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic mechanisms in AML - a target for therapy.
    Oki Y; Issa JP
    Cancer Treat Res; 2010; 145():19-40. PubMed ID: 20306243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BAALC-associated gene expression profiles define IGFBP7 as a novel molecular marker in acute leukemia.
    Heesch S; Schlee C; Neumann M; Stroux A; Kühnl A; Schwartz S; Haferlach T; Goekbuget N; Hoelzer D; Thiel E; Hofmann WK; Baldus CD
    Leukemia; 2010 Aug; 24(8):1429-36. PubMed ID: 20535151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of epigenetic modifications that contribute to pathogenesis in therapy-related AML: Effective integration of genome-wide histone modification with transcriptional profiles.
    Yang XH; Wang B; Cunningham JM
    BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S6. PubMed ID: 26043758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes.
    Kimura A; Matsubara K; Horikoshi M
    J Biochem; 2005 Dec; 138(6):647-62. PubMed ID: 16428293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A distinct epigenetic signature at targets of a leukemia protein.
    Rossetti S; Hoogeveen AT; Liang P; Stanciu C; van der Spek P; Sacchi N
    BMC Genomics; 2007 Feb; 8():38. PubMed ID: 17266773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer.
    Soejima H; Nakagawachi T; Zhao W; Higashimoto K; Urano T; Matsukura S; Kitajima Y; Takeuchi M; Nakayama M; Oshimura M; Miyazaki K; Joh K; Mukai T
    Oncogene; 2004 May; 23(25):4380-8. PubMed ID: 15007390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic control of translation regulation: alterations in histone H3 lysine 9 post-translation modifications are correlated with the expression of the translation initiation factor 2B (Eif2b5) during thermal control establishment.
    Kisliouk T; Ziv M; Meiri N
    Dev Neurobiol; 2010 Feb; 70(2):100-13. PubMed ID: 19950192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of histone modifications across mammalian genomes: implications for 'epigenetic' marking.
    Lee BM; Mahadevan LC
    J Cell Biochem; 2009 Sep; 108(1):22-34. PubMed ID: 19623574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic inactivation of the placentally imprinted tumor suppressor gene TFPI2 in prostate carcinoma.
    Ribarska T; Ingenwerth M; Goering W; Engers R; Schulz WA
    Cancer Genomics Proteomics; 2010; 7(2):51-60. PubMed ID: 20335518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic regulation of CIITA expression in human T-cells.
    van Eggermond MC; Boom DR; Klous P; Schooten E; Marquez VE; Wierda RJ; Holling TM; van den Elsen PJ
    Biochem Pharmacol; 2011 Nov; 82(10):1430-7. PubMed ID: 21664896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LEO1 is regulated by PRL-3 and mediates its oncogenic properties in acute myelogenous leukemia.
    Chong PS; Zhou J; Cheong LL; Liu SC; Qian J; Guo T; Sze SK; Zeng Q; Chng WJ
    Cancer Res; 2014 Jun; 74(11):3043-53. PubMed ID: 24686170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone acetylation in gene regulation.
    Verdone L; Agricola E; Caserta M; Di Mauro E
    Brief Funct Genomic Proteomic; 2006 Sep; 5(3):209-21. PubMed ID: 16877467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk assessment in patients with acute myeloid leukemia and a normal karyotype.
    Bienz M; Ludwig M; Leibundgut EO; Mueller BU; Ratschiller D; Solenthaler M; Fey MF; Pabst T
    Clin Cancer Res; 2005 Feb; 11(4):1416-24. PubMed ID: 15746041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic and reversibility of heterochromatic gene silencing in human disease.
    Zardo G; Fazi F; Travaglini L; Nervi C
    Cell Res; 2005 Sep; 15(9):679-90. PubMed ID: 16212874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H3K9 acetylation and radial chromatin positioning.
    Strasák L; Bártová E; Harnicarová A; Galiová G; Krejcí J; Kozubek S
    J Cell Physiol; 2009 Jul; 220(1):91-101. PubMed ID: 19248079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone onco-modifications.
    Füllgrabe J; Kavanagh E; Joseph B
    Oncogene; 2011 Aug; 30(31):3391-403. PubMed ID: 21516126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic heterochromatin markers distinguish terminally differentiated leukocytes from incompletely differentiated leukemia cells in human blood.
    Popova EY; Claxton DF; Lukasova E; Bird PI; Grigoryev SA
    Exp Hematol; 2006 Apr; 34(4):453-62. PubMed ID: 16569592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells.
    Cuomo A; Moretti S; Minucci S; Bonaldi T
    Amino Acids; 2011 Jul; 41(2):387-99. PubMed ID: 20617350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial effects of four histone modifications in transcription and differentiation.
    Fischer JJ; Toedling J; Krueger T; Schueler M; Huber W; Sperling S
    Genomics; 2008 Jan; 91(1):41-51. PubMed ID: 17997276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.