These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22198036)

  • 1. On the paradoxical determinations of the lacuno-canalicular permeability of bone.
    Lemaire T; Lemonnier S; Naili S
    Biomech Model Mechanobiol; 2012 Sep; 11(7):933-46. PubMed ID: 22198036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of bone permeability considering the morphology of lacuno-canalicular porosity.
    Kameo Y; Adachi T; Sato N; Hojo M
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):240-8. PubMed ID: 20142108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Textural versus electrostatic exclusion-enrichment effects in the effective chemical transport within the cortical bone: a numerical investigation.
    Lemaire T; Kaiser J; Naili S; Sansalone V
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1223-42. PubMed ID: 23804591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible role of calcium permselectivity in bone adaptation.
    Lemaire T; Naili S
    Med Hypotheses; 2012 Mar; 78(3):367-9. PubMed ID: 22222154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone.
    Gatti V; Azoulay EM; Fritton SP
    J Biomech; 2018 Jan; 66():127-136. PubMed ID: 29217091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of bone permeability using accurate microstructural measurements.
    Beno T; Yoon YJ; Cowin SC; Fritton SP
    J Biomech; 2006; 39(13):2378-87. PubMed ID: 16176815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the viscoelastic effect in a bone remodeling model.
    Baïotto S; Zidi M
    Biomech Model Mechanobiol; 2009 Apr; 8(2):129-39. PubMed ID: 18357479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical basis for the determination of the lacunar-canalicular permeability of bone using cyclic loading.
    Benalla M; Cardoso L; Cowin SC
    Biomech Model Mechanobiol; 2012 Jul; 11(6):767-80. PubMed ID: 21959747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu: a multi-parametric sensitivity analysis.
    Sansalone V; Kaiser J; Naili S; Lemaire T
    Biomech Model Mechanobiol; 2013 Jun; 12(3):533-53. PubMed ID: 22869342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.
    Abdalrahman T; Scheiner S; Hellmich C
    J Theor Biol; 2015 Jan; 365():433-44. PubMed ID: 25452137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bone Cell Biology Assessed by Microscopic Approach. Regulation of bone mineralization through the osteocyte lacuno-canalicular network].
    Matsuo K
    Clin Calcium; 2015 Oct; 25(10):1461-6. PubMed ID: 26412724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional elastic plastic damage constitutive law for bone tissue.
    Garcia D; Zysset PK; Charlebois M; Curnier A
    Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanotransduction in bone--role of the lacuno-canalicular network.
    Burger EH; Klein-Nulend J
    FASEB J; 1999; 13 Suppl():S101-12. PubMed ID: 10352151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanical response numerical analysis of bone tissue based on liquid saturated biphasic porous medium model].
    Li D; Chen H; Wang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):381-6. PubMed ID: 15250138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.
    Widmer RP; Ferguson SJ
    J Biomech Eng; 2011 May; 133(5):051007. PubMed ID: 21599098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in assessment of bone porosity, permeability and interstitial fluid flow.
    Cardoso L; Fritton SP; Gailani G; Benalla M; Cowin SC
    J Biomech; 2013 Jan; 46(2):253-65. PubMed ID: 23174418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.