These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 22198150)
21. SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Grigg SP; Canales C; Hay A; Tsiantis M Nature; 2005 Oct; 437(7061):1022-6. PubMed ID: 16222298 [TBL] [Abstract][Full Text] [Related]
22. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence. Qin J; Ma X; Yi Z; Tang Z; Meng Y Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233 [TBL] [Abstract][Full Text] [Related]
23. Alteration of the shoot radial pattern in Arabidopsis thaliana by a gain-of-function allele of the class III HD-Zip gene INCURVATA4. Ochando I; González-Reig S; Ripoll JJ; Vera A; Martínez-Laborda A Int J Dev Biol; 2008; 52(7):953-61. PubMed ID: 18956325 [TBL] [Abstract][Full Text] [Related]
24. AUXIN RESPONSE FACTOR3 plays distinct role during early flower development. Zheng Y; Zhang K; Guo L; Liu X; Zhang Z Plant Signal Behav; 2018; 13(5):e1467690. PubMed ID: 29944444 [TBL] [Abstract][Full Text] [Related]
25. Ectopic Expression of a Pak-choi YABBY Gene, Hou H; Lin Y; Hou X Genes (Basel); 2020 Mar; 11(4):. PubMed ID: 32235352 [TBL] [Abstract][Full Text] [Related]
26. Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Mlotshwa S; Yang Z; Kim Y; Chen X Plant Mol Biol; 2006 Jul; 61(4-5):781-93. PubMed ID: 16897492 [TBL] [Abstract][Full Text] [Related]
27. Arabidopsis genes AS1, AS2, and JAG negatively regulate boundary-specifying genes to promote sepal and petal development. Xu B; Li Z; Zhu Y; Wang H; Ma H; Dong A; Huang H Plant Physiol; 2008 Feb; 146(2):566-75. PubMed ID: 18156293 [TBL] [Abstract][Full Text] [Related]
28. Regulated RNA processing in the control of Arabidopsis flowering. Quesada V; Dean C; Simpson GG Int J Dev Biol; 2005; 49(5-6):773-80. PubMed ID: 16096981 [TBL] [Abstract][Full Text] [Related]
29. SINE RNA induces severe developmental defects in Arabidopsis thaliana and interacts with HYL1 (DRB1), a key member of the DCL1 complex. Pouch-Pélissier MN; Pélissier T; Elmayan T; Vaucheret H; Boko D; Jantsch MF; Deragon JM PLoS Genet; 2008 Jun; 4(6):e1000096. PubMed ID: 18551175 [TBL] [Abstract][Full Text] [Related]
30. The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Liu Q; Yao X; Pi L; Wang H; Cui X; Huang H Plant J; 2009 Apr; 58(1):27-40. PubMed ID: 19054365 [TBL] [Abstract][Full Text] [Related]
31. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Mateos JL; Madrigal P; Tsuda K; Rawat V; Richter R; Romera-Branchat M; Fornara F; Schneeberger K; Krajewski P; Coupland G Genome Biol; 2015 Feb; 16(1):31. PubMed ID: 25853185 [TBL] [Abstract][Full Text] [Related]
32. The origin of the plant body axis. Ueda M; Laux T Curr Opin Plant Biol; 2012 Dec; 15(6):578-84. PubMed ID: 22921364 [TBL] [Abstract][Full Text] [Related]
34. A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis. Larue CT; Wen J; Walker JC Plant J; 2009 May; 58(3):450-63. PubMed ID: 19154203 [TBL] [Abstract][Full Text] [Related]
35. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Baker CC; Sieber P; Wellmer F; Meyerowitz EM Curr Biol; 2005 Feb; 15(4):303-15. PubMed ID: 15723790 [TBL] [Abstract][Full Text] [Related]
36. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. Matthewman CA; Kawashima CG; Húska D; Csorba T; Dalmay T; Kopriva S FEBS Lett; 2012 Sep; 586(19):3242-8. PubMed ID: 22771787 [TBL] [Abstract][Full Text] [Related]
37. Determinants of correlated expression of transcription factors and their target genes. Zaborowski AB; Walther D Nucleic Acids Res; 2020 Nov; 48(20):11347-11369. PubMed ID: 33104784 [TBL] [Abstract][Full Text] [Related]
38. Characterization of SOC1's central role in flowering by the identification of its upstream and downstream regulators. Immink RG; Posé D; Ferrario S; Ott F; Kaufmann K; Valentim FL; de Folter S; van der Wal F; van Dijk AD; Schmid M; Angenent GC Plant Physiol; 2012 Sep; 160(1):433-49. PubMed ID: 22791302 [TBL] [Abstract][Full Text] [Related]
39. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors. Yu S; Galvão VC; Zhang YC; Horrer D; Zhang TQ; Hao YH; Feng YQ; Wang S; Schmid M; Wang JW Plant Cell; 2012 Aug; 24(8):3320-32. PubMed ID: 22942378 [TBL] [Abstract][Full Text] [Related]
40. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. Refahi Y; Zardilis A; Michelin G; Wightman R; Leggio B; Legrand J; Faure E; Vachez L; Armezzani A; Risson AE; Zhao F; Das P; Prunet N; Meyerowitz EM; Godin C; Malandain G; Jönsson H; Traas J Dev Cell; 2021 Feb; 56(4):540-556.e8. PubMed ID: 33621494 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]