These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 22198333)
1. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Dong Y; Morton JC; Ramirez JL; Souza-Neto JA; Dimopoulos G Insect Biochem Mol Biol; 2012 Feb; 42(2):126-32. PubMed ID: 22198333 [TBL] [Abstract][Full Text] [Related]
2. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Souza-Neto JA; Sim S; Dimopoulos G Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17841-6. PubMed ID: 19805194 [TBL] [Abstract][Full Text] [Related]
3. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus. Jupatanakul N; Sim S; Angleró-Rodríguez YI; Souza-Neto J; Das S; Poti KE; Rossi SL; Bergren N; Vasilakis N; Dimopoulos G PLoS Negl Trop Dis; 2017 Jan; 11(1):e0005187. PubMed ID: 28081143 [TBL] [Abstract][Full Text] [Related]
4. OTU7B Modulates the Mosquito Immune Response to Beauveria bassiana Infection via Deubiquitination of the Toll Adaptor TRAF4. Wang Y; Chang M; Wang M; Ji Y; Sun X; Raikhel AS; Zou Z Microbiol Spectr; 2023 Feb; 11(1):e0312322. PubMed ID: 36537797 [TBL] [Abstract][Full Text] [Related]
5. Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes. Deng SQ; Zou WH; Li DL; Chen JT; Huang Q; Zhou LJ; Tian XX; Chen YJ; Peng HJ PLoS Negl Trop Dis; 2019 Jul; 13(7):e0007590. PubMed ID: 31306427 [TBL] [Abstract][Full Text] [Related]
6. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. Ramirez JL; Souza-Neto J; Torres Cosme R; Rovira J; Ortiz A; Pascale JM; Dimopoulos G PLoS Negl Trop Dis; 2012; 6(3):e1561. PubMed ID: 22413032 [TBL] [Abstract][Full Text] [Related]
7. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. Bian G; Xu Y; Lu P; Xie Y; Xi Z PLoS Pathog; 2010 Apr; 6(4):e1000833. PubMed ID: 20368968 [TBL] [Abstract][Full Text] [Related]
8. Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. Ye YH; Carrasco AM; Frentiu FD; Chenoweth SF; Beebe NW; van den Hurk AF; Simmons CP; O'Neill SL; McGraw EA PLoS Negl Trop Dis; 2015; 9(6):e0003894. PubMed ID: 26115104 [TBL] [Abstract][Full Text] [Related]
9. Entomopathogenic fungi and Schinus molle essential oil: The combination of two eco-friendly agents against Aedes aegypti larvae. de Oliveira Barbosa Bitencourt R; de Souza Faria F; Marchesini P; Reis Dos Santos-Mallet J; Guedes Camargo M; Rita Elias Pinheiro Bittencourt V; Guedes Pontes E; Baptista Pereira D; Siqueira de Almeida Chaves D; da Costa Angelo I J Invertebr Pathol; 2022 Oct; 194():107827. PubMed ID: 36108793 [TBL] [Abstract][Full Text] [Related]
10. Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes. García-Munguía AM; Garza-Hernández JA; Rebollar-Tellez EA; Rodríguez-Pérez MA; Reyes-Villanueva F Parasit Vectors; 2011 Feb; 4():24. PubMed ID: 21352560 [TBL] [Abstract][Full Text] [Related]
11. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Ramirez JL; Muturi EJ; Barletta ABF; Rooney AP Dev Comp Immunol; 2019 Jun; 95():1-9. PubMed ID: 30582948 [TBL] [Abstract][Full Text] [Related]
12. Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection. Behura SK; Gomez-Machorro C; Harker BW; deBruyn B; Lovin DD; Hemme RR; Mori A; Romero-Severson J; Severson DW PLoS Negl Trop Dis; 2011 Nov; 5(11):e1385. PubMed ID: 22102922 [TBL] [Abstract][Full Text] [Related]
13. Beauveria bassiana interacts with gut and hemocytes to manipulate Aedes aegypti immunity. de Oliveira Barbosa Bitencourt R; Corrêa TA; Santos-Mallet J; Santos HA; Lowenberger C; Moreira HVS; Gôlo PS; Bittencourt VREP; da Costa Angelo I Parasit Vectors; 2023 Jan; 16(1):17. PubMed ID: 36650591 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of the In2Care® auto-dissemination device for reducing dengue transmission: study protocol for a parallel, two-armed cluster randomised trial in the Philippines. Salazar F; Angeles J; Sy AK; Inobaya MT; Aguila A; Toner T; Bangs MJ; Thomsen E; Paul RE Trials; 2019 May; 20(1):269. PubMed ID: 31088515 [TBL] [Abstract][Full Text] [Related]
15. Angleró-Rodríguez YI; MacLeod HJ; Kang S; Carlson JS; Jupatanakul N; Dimopoulos G Front Microbiol; 2017; 8():2050. PubMed ID: 29109710 [TBL] [Abstract][Full Text] [Related]
17. Intra-Phenotypic and -Genotypic Variations of Zamora-Avilés N; Orozco-Flores AA; Cavazos-Vallejo T; Romo-Sáenz CI; Cuevas-García DA; Gomez-Flores R; Tamez-Guerra P Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201493 [No Abstract] [Full Text] [Related]
18. Regulation of arginine methyltransferase 3 by a Wolbachia-induced microRNA in Aedes aegypti and its effect on Wolbachia and dengue virus replication. Zhang G; Hussain M; Asgari S Insect Biochem Mol Biol; 2014 Oct; 53():81-8. PubMed ID: 25158106 [TBL] [Abstract][Full Text] [Related]
19. Dengue virus infection induces chromatin remodeling at locus AAEL006536 in the midgut of Aedes aegypti. Gleason-Rodríguez G; Castillo-Méndez M; Maya K; Ramos-Castañeda J; Valverde-Garduño V Salud Publica Mex; 2018; 60(1):41-47. PubMed ID: 29689655 [TBL] [Abstract][Full Text] [Related]
20. Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection. Jupatanakul N; Sim S; Dimopoulos G Dev Comp Immunol; 2014 Mar; 43(1):1-9. PubMed ID: 24135719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]