BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22198436)

  • 1. In vitro glycation of human serum albumin by dihydroxyacetone and dihydroxyacetone phosphate.
    Seneviratne C; Dombi GW; Liu W; Dain JA
    Biochem Biophys Res Commun; 2012 Jan; 417(2):817-23. PubMed ID: 22198436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The in vitro glycation of human serum albumin in the presence of Zn(II).
    Seneviratne C; Dombi GW; Liu W; Dain JA
    J Inorg Biochem; 2011 Dec; 105(12):1548-54. PubMed ID: 22071077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro nonenzymatic glycation of guanosine 5'-triphosphate by dihydroxyacetone phosphate.
    Li Y; Cohenford MA; Dutta U; Dain JA
    Anal Bioanal Chem; 2008 Nov; 392(6):1189-96. PubMed ID: 18791706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of glycation sites on human serum albumin using (16)O/(18)O-labeling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Barnaby OS; Wa C; Cerny RL; Clarke W; Hage DS
    Clin Chim Acta; 2010 Aug; 411(15-16):1102-10. PubMed ID: 20394739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of metformin and pyridoxamine in the formation of early, intermediate and advanced glycation end-products.
    Ahmad S; Shahab U; Baig MH; Khan MS; Khan MS; Srivastava AK; Saeed M; Moinuddin
    PLoS One; 2013; 8(9):e72128. PubMed ID: 24023728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review: Glycation of human serum albumin.
    Anguizola J; Matsuda R; Barnaby OS; Hoy KS; Wa C; DeBolt E; Koke M; Hage DS
    Clin Chim Acta; 2013 Oct; 425():64-76. PubMed ID: 23891854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the molecular mechanisms underpinning biorecognition of early-glycated human serum albumin and receptor for advanced glycation end products.
    Tramarin A; Naldi M; Degani G; Lupu L; Wiegand P; Mazzolari A; Altomare A; Aldini G; Popolo L; Vistoli G; Przybylski M; Bartolini M
    Anal Bioanal Chem; 2020 Jul; 412(18):4245-4259. PubMed ID: 32367292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of protein glycation products by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
    Kislinger T; Humeny A; Pischetsrieder M
    Curr Med Chem; 2004 Aug; 11(16):2185-93. PubMed ID: 15279557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Piracetam on Gliclazide-Glycated Human Serum Albumin Interaction. A Spectrofluorometric Study.
    Szkudlarek A; Pożycka J; Maciążek-Jurczyk M
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30597970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis.
    Szkudlarek A; Sułkowska A; Maciążek-Jurczyk M; Chudzik M; Równicka-Zubik J
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():645-53. PubMed ID: 25735846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of modification sites formed on human serum albumin at various stages of glycation.
    Barnaby OS; Cerny RL; Clarke W; Hage DS
    Clin Chim Acta; 2011 Jan; 412(3-4):277-85. PubMed ID: 21034726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of non-enzymatic glycosylation of human serum albumin using ion trap-time of flight mass spectrometry.
    Bai X; Wang Z; Huang C; Wang Z; Chi L
    Molecules; 2012 Jul; 17(8):8782-94. PubMed ID: 22832880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of glycation adducts on human serum albumin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Wa C; Cerny RL; Clarke WA; Hage DS
    Clin Chim Acta; 2007 Oct; 385(1-2):48-60. PubMed ID: 17707360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of in vitro and in vivo glycation of albumin: a potential disease marker in diabetes mellitus.
    Neelofar K; Ahmad J
    Glycoconj J; 2017 Oct; 34(5):575-584. PubMed ID: 28812216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fructose-human serum albumin interaction undergoes numerous biophysical and biochemical changes before forming AGEs and aggregates.
    Zaman A; Arif Z; Moinuddin ; Alam K
    Int J Biol Macromol; 2018 Apr; 109():896-906. PubMed ID: 29133088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Off-line liquid chromatography-MALDI by with various matrices and tandem mass spectrometry for analysis of glycated human serum albumin tryptic peptides.
    Lapolla A; Brancia FL; Bereszczak J; Fedele D; Baccarin L; Seraglia R; Traldi P
    Mol Nutr Food Res; 2007 Apr; 51(4):456-61. PubMed ID: 17357982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Albumin competitively inhibits glycation of less abundant proteins.
    Bhonsle HS; Singh SK; Srivastava G; Boppana R; Kulkarni MJ
    Protein Pept Lett; 2008; 15(7):663-7. PubMed ID: 18782060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the glycation of albumin in freeze-dried and frozen human serum.
    Bunk DM
    Anal Chem; 1997 Jul; 69(13):2457-63. PubMed ID: 9212708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate mass measurements by Fourier transform mass spectrometry in the study of advanced glycation end products/peptides.
    Marotta E; Lapolla A; Fedele D; Senesi A; Reitano R; Witt M; Seraglia R; Traldi P
    J Mass Spectrom; 2003 Feb; 38(2):196-205. PubMed ID: 12577286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereochemistry of the acyl dihydroxyacetone phosphate acyl exchange reaction.
    Friedberg SJ; Satsangi N; Weintraub ST
    J Lipid Res; 1991 Feb; 32(2):259-66. PubMed ID: 2066662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.