BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 22198733)

  • 1. Small-molecule proteostasis regulators for protein conformational diseases.
    Calamini B; Silva MC; Madoux F; Hutt DM; Khanna S; Chalfant MA; Saldanha SA; Hodder P; Tait BD; Garza D; Balch WE; Morimoto RI
    Nat Chem Biol; 2011 Dec; 8(2):185-96. PubMed ID: 22198733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans.
    Das R; Melo JA; Thondamal M; Morton EA; Cornwell AB; Crick B; Kim JH; Swartz EW; Lamitina T; Douglas PM; Samuelson AV
    PLoS Genet; 2017 Oct; 13(10):e1007038. PubMed ID: 29036198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein homeostasis as a therapeutic target for diseases of protein conformation.
    Calamini B; Morimoto RI
    Curr Top Med Chem; 2012; 12(22):2623-40. PubMed ID: 23339312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cranberry Extract Standardized for Proanthocyanidins Alleviates β-Amyloid Peptide Toxicity by Improving Proteostasis Through HSF-1 in Caenorhabditis elegans Model of Alzheimer's Disease.
    Guo H; Cao M; Zou S; Ye B; Dong Y
    J Gerontol A Biol Sci Med Sci; 2016 Dec; 71(12):1564-1573. PubMed ID: 26405062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaperone networks: tipping the balance in protein folding diseases.
    Voisine C; Pedersen JS; Morimoto RI
    Neurobiol Dis; 2010 Oct; 40(1):12-20. PubMed ID: 20472062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy.
    Kumsta C; Hansen M
    Autophagy; 2017 Jun; 13(6):1076-1077. PubMed ID: 28333578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetic screening strategy identifies novel regulators of the proteostasis network.
    Silva MC; Fox S; Beam M; Thakkar H; Amaral MD; Morimoto RI
    PLoS Genet; 2011 Dec; 7(12):e1002438. PubMed ID: 22242008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organismal Protein Homeostasis Mechanisms.
    Hoppe T; Cohen E
    Genetics; 2020 Aug; 215(4):889-901. PubMed ID: 32759342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Differentiation Transcription Factor Establishes Muscle-Specific Proteostasis in Caenorhabditis elegans.
    Bar-Lavan Y; Shemesh N; Dror S; Ofir R; Yeger-Lotem E; Ben-Zvi A
    PLoS Genet; 2016 Dec; 12(12):e1006531. PubMed ID: 28036392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mitochondrial Stress-Specific Form of HSF1 Protects against Age-Related Proteostasis Collapse.
    Williams R; Laskovs M; Williams RI; Mahadevan A; Labbadia J
    Dev Cell; 2020 Sep; 54(6):758-772.e5. PubMed ID: 32735771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans.
    Kumsta C; Chang JT; Schmalz J; Hansen M
    Nat Commun; 2017 Feb; 8():14337. PubMed ID: 28198373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases.
    Hekmatimoghaddam S; Zare-Khormizi MR; Pourrajab F
    Biofactors; 2017 Nov; 43(6):737-759. PubMed ID: 26899445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise.
    West JD; Wang Y; Morano KA
    Chem Res Toxicol; 2012 Oct; 25(10):2036-53. PubMed ID: 22799889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity.
    Brehme M; Voisine C
    Dis Model Mech; 2016 Aug; 9(8):823-38. PubMed ID: 27491084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Nonautonomous Regulation of Proteostasis in Aging and Disease.
    Morimoto RI
    Cold Spring Harb Perspect Biol; 2020 Apr; 12(4):. PubMed ID: 30962274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chemical Biology of Molecular Chaperones--Implications for Modulation of Proteostasis.
    Brandvold KR; Morimoto RI
    J Mol Biol; 2015 Sep; 427(18):2931-47. PubMed ID: 26003923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tau protein aggregates inhibit the protein-folding and vesicular trafficking arms of the cellular proteostasis network.
    Yu A; Fox SG; Cavallini A; Kerridge C; O'Neill MJ; Wolak J; Bose S; Morimoto RI
    J Biol Chem; 2019 May; 294(19):7917-7930. PubMed ID: 30936201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteostasis is differentially modulated by inhibition of translation initiation or elongation.
    Clay KJ; Yang Y; Clark C; Petrascheck M
    Elife; 2023 Oct; 12():. PubMed ID: 37795690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring of Proteostasis Networks with Heat Shock Factors.
    Joutsen J; Sistonen L
    Cold Spring Harb Perspect Biol; 2019 Apr; 11(4):. PubMed ID: 30420555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innovative strategies to treat protein misfolding in inborn errors of metabolism: pharmacological chaperones and proteostasis regulators.
    Muntau AC; Leandro J; Staudigl M; Mayer F; Gersting SW
    J Inherit Metab Dis; 2014 Jul; 37(4):505-23. PubMed ID: 24687294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.