These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22199027)

  • 1. Testing gene-environment interaction in large-scale case-control association studies: possible choices and comparisons.
    Mukherjee B; Ahn J; Gruber SB; Chatterjee N
    Am J Epidemiol; 2012 Feb; 175(3):177-90. PubMed ID: 22199027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence.
    Liu G; Mukherjee B; Lee S; Lee AW; Wu AH; Bandera EV; Jensen A; Rossing MA; Moysich KB; Chang-Claude J; Doherty JA; Gentry-Maharaj A; Kiemeney L; Gayther SA; Modugno F; Massuger L; Goode EL; Fridley BL; Terry KL; Cramer DW; Ramus SJ; Anton-Culver H; Ziogas A; Tyrer JP; Schildkraut JM; Kjaer SK; Webb PM; Ness RB; Menon U; Berchuck A; Pharoah PD; Risch H; Pearce CL;
    Am J Epidemiol; 2018 Feb; 187(2):366-377. PubMed ID: 28633381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tests for gene-environment interaction from case-control data: a novel study of type I error, power and designs.
    Mukherjee B; Ahn J; Gruber SB; Rennert G; Moreno V; Chatterjee N
    Genet Epidemiol; 2008 Nov; 32(7):615-26. PubMed ID: 18473390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-analysis of gene-environment interaction exploiting gene-environment independence across multiple case-control studies.
    Estes JP; Rice JD; Li S; Stringham HM; Boehnke M; Mukherjee B
    Stat Med; 2017 Oct; 36(24):3895-3909. PubMed ID: 28744888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency.
    Mukherjee B; Chatterjee N
    Biometrics; 2008 Sep; 64(3):685-694. PubMed ID: 18162111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Bayes model averaging to leverage both gene main effects and G ×  E interactions to identify genomic regions in genome-wide association studies.
    Moss LC; Gauderman WJ; Lewinger JP; Conti DV
    Genet Epidemiol; 2019 Mar; 43(2):150-165. PubMed ID: 30456811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical hierarchical bayes approach to gene-environment interactions: development and application to genome-wide association studies of lung cancer in TRICL.
    Sohns M; Viktorova E; Amos CI; Brennan P; Fehringer G; Gaborieau V; Han Y; Heinrich J; Chang-Claude J; Hung RJ; Müller-Nurasyid M; Risch A; Thomas D; Bickeböller H
    Genet Epidemiol; 2013 Sep; 37(6):551-559. PubMed ID: 23893921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robust Test for Additive Gene-Environment Interaction Under the Trend Effect of Genotype Using an Empirical Bayes-Type Shrinkage Estimator.
    Sanyal N; Napolioni V; de Rochemonteix M; Belloy ME; Caporaso NE; Landi MT; Greicius MD; Chatterjee N; Han SS
    Am J Epidemiol; 2021 Sep; 190(9):1948-1960. PubMed ID: 33942053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empirical Bayes screening of many p-values with applications to microarray studies.
    Datta S; Datta S
    Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invited commentary: efficient testing of gene-environment interaction.
    Chatterjee N; Wacholder S
    Am J Epidemiol; 2009 Jan; 169(2):231-3; discussion 234-5. PubMed ID: 19022825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Likelihood ratio test for detecting gene (G)-environment (E) interactions under an additive risk model exploiting G-E independence for case-control data.
    Han SS; Rosenberg PS; Garcia-Closas M; Figueroa JD; Silverman D; Chanock SJ; Rothman N; Chatterjee N
    Am J Epidemiol; 2012 Dec; 176(11):1060-7. PubMed ID: 23118105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparisons of power of statistical methods for gene-environment interaction analyses.
    Ege MJ; Strachan DP
    Eur J Epidemiol; 2013 Oct; 28(10):785-97. PubMed ID: 24005774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting gene-environment interactions using a combined case-only and case-control approach.
    Li D; Conti DV
    Am J Epidemiol; 2009 Feb; 169(4):497-504. PubMed ID: 19074774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of exposure-biased sampling designs on detection of gene-environment interactions in case-control studies with potential exposure misclassification.
    Stenzel SL; Ahn J; Boonstra PS; Gruber SB; Mukherjee B
    Eur J Epidemiol; 2015 May; 30(5):413-23. PubMed ID: 24894824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tests for Gene-Environment Interactions and Joint Effects With Exposure Misclassification.
    Boonstra PS; Mukherjee B; Gruber SB; Ahn J; Schmit SL; Chatterjee N
    Am J Epidemiol; 2016 Feb; 183(3):237-47. PubMed ID: 26755675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Misclassification Bias in the Assessment of Gene-by-Environment Interactions.
    Weisskopf MG; Leung M
    Epidemiology; 2023 Sep; 34(5):673-680. PubMed ID: 37255239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing for Sufficient-Cause Gene-Environment Interactions Under the Assumptions of Independence and Hardy-Weinberg Equilibrium.
    Lee WC
    Am J Epidemiol; 2015 Jul; 182(1):9-16. PubMed ID: 26025233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general approach to detect gene (G)-environment (E) additive interaction leveraging G-E independence in case-control studies.
    Tchetgen Tchetgen EJ; Shi X; Wong BHW; Sofer T
    Stat Med; 2019 Oct; 38(24):4841-4853. PubMed ID: 31441522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental confounding in gene-environment interaction studies.
    Vanderweele TJ; Ko YA; Mukherjee B
    Am J Epidemiol; 2013 Jul; 178(1):144-52. PubMed ID: 23821317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: focus on the false discovery rate and simulation study.
    Dudoit S; Gilbert HN; van der Laan MJ
    Biom J; 2008 Oct; 50(5):716-44. PubMed ID: 18932138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.